Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605. https://doi.org/10.1038/33416.
Article
CAS
PubMed
Google Scholar
Stichel CC, Augustin M, Kühn K, Zhu XR, Engels P, Ullmer C, et al. Parkin expression in the adult mouse brain. Eur J Neurosci. 2000;12(12):4181. https://doi.org/10.1046/j.1460-9568.2000.01314.x.
Article
CAS
PubMed
Google Scholar
Seirafi M, Kozlov G, Gehring K. Parkin structure and function. FEBS J. 2015;282(11):2076–88. https://doi.org/10.1111/febs.13249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, Mcadams H, et al. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA. 2003;100(10):5956. https://doi.org/10.1073/pnas.0931262100.
Article
CAS
PubMed
Google Scholar
Liu J, Zhang C, Hu W, Feng Z. Parkinson’s disease-associated protein Parkin: an unusual player in cancer. Cancer Commun. 2018;38(1):40. https://doi.org/10.1186/s40880-018-0314-z.
Article
CAS
Google Scholar
Xiang RL, Huang Y, Zhang Y, Cong X, Zhang ZJ, Wu LL, et al. Type 2 diabetes-induced hyposalivation of the submandibular gland through PINK1/Parkin-mediated mitophagy. J Cell Physiol. 2020;235(1):232–44. https://doi.org/10.1002/jcp.28962.
Article
CAS
PubMed
Google Scholar
Chakraborty J, Basso V, Ziviani E. Post translational modification of Parkin. Biol Direct. 2017;12(1):6. https://doi.org/10.1186/s13062-017-0176-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Gao J, Huang H, Dawson VL, Dawson TM. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA. 2000;97(24):13354–9. https://doi.org/10.1073/pnas.240347797.
Article
CAS
PubMed
Google Scholar
Zarate-Lagunes M, Gu WJ, Blanchard V, Francois C, Muriel MP, Mouatt-Prigent A, et al. Parkin immunoreactivity in the brain of human and non-human primates: an immunohistochemical analysis in normal conditions and in Parkinsonian syndromes. J Comp Neurol. 2001;432(2):184–96. https://doi.org/10.1002/cne.1096.
Article
CAS
PubMed
Google Scholar
Shridhar V, Staub J, Huntley B, Cliby W, Jenkins R, Pass HI, et al. A novel region of deletion on chromosome 6q23.3 spanning less than 500 Kb in high grade invasive epithelial ovarian cancer. Oncogene. 1999;18(26):3913. https://doi.org/10.1038/sj.onc.1202756.
Article
CAS
PubMed
Google Scholar
Yeo CW, Ng FS, Chai C, Tan JM, Koh GR, Chong YK, et al. Parkin pathway activation mitigates glioma cell proliferation and predicts patient survival. Can Res. 2012;72(10):2543. https://doi.org/10.1158/0008-5472.CAN-11-3060.
Article
CAS
Google Scholar
Randow F, Youle RJ. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe. 2014;15(4):403–11. https://doi.org/10.1016/j.chom.2014.03.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yorimitsu T, Klionsky DJ. Autophagy: molecular machinery for self-eating. Cell Death Differ. 2005;2(12 Suppl):1542–52. https://doi.org/10.1038/sj.cdd.4401765.
Article
CAS
Google Scholar
Vivesbauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA. 2010;107(2):378–83. https://doi.org/10.1073/pnas.0911187107.
Article
Google Scholar
Seok Min J, Youle RJ. PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci. 2012;125(4):795–9. https://doi.org/10.1242/jcs.093849.
Article
CAS
Google Scholar
Kahori SF, Tsuyoshi I, Nobutaka H, Yuzuru I. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet. 2014;10(6):e1004391. https://doi.org/10.1371/journal.pgen.1004391.
Article
CAS
Google Scholar
Hang L, Thundyil J, Lim KL. Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci. 2015;1350(1):37–47. https://doi.org/10.1111/nyas.12820.
Article
CAS
PubMed
Google Scholar
Fatima Zahra C, Stéphanie SP, Jaclyn Nicole LG, Annick F, Régis DM, Gilles D, et al. GABARAPL1 (GEC1) associates with autophagic vesicles. Autophagy. 2010;6(4):495–505. https://doi.org/10.4161/auto.6.4.11819.
Article
Google Scholar
Youngil L, Hwa-Youn L, Hanna RA, Gustafsson ÅB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2011;301(5):1924–31. https://doi.org/10.1152/ajpheart.00368.2011.
Article
CAS
Google Scholar
Yasuko K, Yuzuru I, Kentaro O, Ayane K, Toshio I, Mariko S, et al. Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation. Hum Mol Genet. 2007. https://doi.org/10.1093/hmg/ddl439.
Article
Google Scholar
Ayako Y, Arno F, Yuzuru I, Ryosuke T, Kahle PJ, Christian H. Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem. 2005;280(5):3390. https://doi.org/10.1074/jbc.M407724200.
Article
CAS
Google Scholar
Berndsen C, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21(4):301–7. https://doi.org/10.1038/nsmb.2780.
Article
CAS
PubMed
Google Scholar
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, et al. Critical role of FOXO3a in carcinogenesis. Mol Cancer. 2018. https://doi.org/10.1186/s12943-018-0856-3.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Wang X, Hu S, Hu S, Liu L, Liu L. Phosphorylation and acetylation modifications of FOXO3a: independently or synergistically? Oncol Lett. 2017;13(5):2867–72. https://doi.org/10.3892/ol.2017.5851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanphui P, Biswas SC. FoxO3a is activated and executes neuron death via Bim in response to β-amyloid. Cell Death Dis. 2013;4(5):e625. https://doi.org/10.1038/cddis.2013.148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daitoku H, Sakamaki JI, Fukamizu A. Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim Biophys Acta. 2011;1813(11):1954–60. https://doi.org/10.1016/j.bbamcr.2011.03.001.
Article
CAS
PubMed
Google Scholar
Yang XJ. Multisite protein modification and intramolecular signaling. Oncogene. 2005;24(10):1653–62. https://doi.org/10.1038/sj.onc.1208173.
Article
CAS
PubMed
Google Scholar
Gupta A, Anjomani-Virmouni S, Koundouros N, Dimitriadi M, Choo-Wing R, Valle A, et al. PARK2 depletion connects energy and oxidative stress to PI3K/Akt activation via PTEN S-nitrosylation. Mol Cell. 2017;65(6):999. https://doi.org/10.1016/j.molcel.2017.02.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avraham E, Rott R, Liani E, Szargel R, Engelender S. Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem. 2007;282(17):12842. https://doi.org/10.1074/jbc.M608243200.
Article
CAS
PubMed
Google Scholar
Finnberg N, El-Deiry WS. Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol Ther. 2004;3(7):614–6. https://doi.org/10.4161/cbt.3.7.1057.
Article
CAS
PubMed
Google Scholar
Sha D, Chin LS, Li L. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet. 2010;19(2):352–63. https://doi.org/10.1093/hmg/ddp501.
Article
CAS
PubMed
Google Scholar
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun. 2008;377(3):975–80. https://doi.org/10.1016/j.bbrc.2008.10.104.
Article
CAS
PubMed
Google Scholar
Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012;2(5):120080. https://doi.org/10.1098/rsob.120080.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep. 2012;2(12):1002. https://doi.org/10.1038/srep01002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poole AC, Thomas RE, Andrews LA, Mcbride HM, Whitworth AJ, Pallanck LJ. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA. 2008;105(5):1638–43. https://doi.org/10.1073/pnas.0709336105.
Article
PubMed
Google Scholar
Kazlauskaite A, Martínez-Torres RJ, Wilkie S, Kumar A, Peltier J, Gonzalez A, et al. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. 2015;16(8):939–54. https://doi.org/10.15252/embr.201540352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Ii GWD. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340(6131):471–5. https://doi.org/10.1126/science.1231031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto MJ, Pedro JR, Costa RO, Almeida RD. Visualizing K48 ubiquitination during presynaptic formation by ubiquitination-induced fluorescence complementation (UiFC). Front Mol Neurosci. 2016;9:43. https://doi.org/10.3389/fnmol.2016.00043.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durcan TM, Fon EA. Mutant ataxin-3 promotes the autophagic degradation of parkin. Autophagy. 2011;7(2):233–4. https://doi.org/10.4161/auto.7.2.14224.
Article
PubMed
Google Scholar
Durcan TM, Kontogiannea M, Thorarinsdottir T, Fallon L, Williams AJ, Djarmati A, et al. The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum Mol Genet. 2011;20(1):141. https://doi.org/10.1093/hmg/ddq452.
Article
CAS
PubMed
Google Scholar
Durcan TM, Kontogiannea M, Bedard N, Wing SS, Fon EA. Ataxin-3 deubiquitination is coupled to Parkin ubiquitination via E2 ubiquitin-conjugating enzyme. J Biol Chem. 2012;287(1):531–41. https://doi.org/10.1074/jbc.M111.288449.
Article
CAS
PubMed
Google Scholar
Varshavsky A. The ubiquitin system. Nat Med. 1998;67(67):1–17. https://doi.org/10.1146/annurev.biochem.67.1.425.
Article
Google Scholar
Hegde AN. The ubiquitin-proteasome pathway and synaptic plasticity. Learn Mem. 2010;17(7):314. https://doi.org/10.1101/lm.1504010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Federica M, Mark VDM, Suzan VDL, Domenico G. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener. 2011;6(1):34.
Article
Google Scholar
Nagy V, Dikic I. Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity. Biol Chem. 2010;391(2/3):163–9. https://doi.org/10.1515/bc.2010.021.
Article
CAS
PubMed
Google Scholar
Müller S, Hoege C, Pyrowolakis G, Jentsch S. SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol. 2001;2(3):202–10. https://doi.org/10.1038/35056591.
Article
PubMed
Google Scholar
Hay RT. Protein modification by SUMO. Trends Biochem Sci. 2001;26(5):332–3. https://doi.org/10.1016/S0968-0004(01)01849-7.
Article
CAS
PubMed
Google Scholar
Won UJ, Kwang Chul C. Functional modulation of parkin through physical interaction with SUMO-1. J Neurosci Res. 2010;84(7):1543–54. https://doi.org/10.1002/jnr.21041.
Article
CAS
Google Scholar
Guerra de Souza AC, Prediger RD, Cimarosti H. SUMO-regulated mitochondrial function in Parkinson’s disease. J Neurochem. 2016;137(5):673–86. https://doi.org/10.1111/jnc.13599.
Article
CAS
PubMed
Google Scholar
Watson IR, Irwin MS. Ubiquitin and ubiquitin-like modifications of the p53 family. Neoplasia. 2006;8(8):655–66. https://doi.org/10.1593/neo.06439.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartosz W, Alicja Z, Maura W, Ted H, Maciej Z. MDM2 chaperones the p53 tumor suppressor. J Biol Chem. 2007;282(45):32603–12. https://doi.org/10.1074/jbc.M702767200.
Article
CAS
Google Scholar
Junsoo P, Kwangsoo K, Eun-Ju L, Yun-Jee S, Si-Nae L, Kyoungsook P, et al. Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc Natl Acad Sci USA. 2007;104(43):17028–33. https://doi.org/10.1073/pnas.0609852104.
Article
Google Scholar
Dil KA, Kito K, Abe Y, Shin RW, Kamitani T, Ueda N. NEDD8 protein is involved in ubiquitinated inclusion bodies. J Pathol. 2003;199(2):259–66. https://doi.org/10.1002/path.1283.
Article
CAS
Google Scholar
Ji WU, Han KA, Im E, Oh Y, Lee K, Chung KC. Neddylation positively regulates the ubiquitin E3 ligase activity of parkin. J Neurosci Res. 2012;90(5):1030–42. https://doi.org/10.1002/jnr.22828.
Article
CAS
Google Scholar
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Sharmila A, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458(7239):732–6. https://doi.org/10.1038/nature07884.
Article
CAS
PubMed
Google Scholar
Yongchao Z, Morgan MA, Yi S. Targeting neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal. 2014;21(17):2383–400. https://doi.org/10.1089/ars.2013.5795.
Article
CAS
Google Scholar
Choo YS, Vogler G, Wang D, Kalvakuri S, Iliuk A, Tao WA, et al. Regulation of parkin and PINK1 by neddylation. Hum Mol Genet. 2012;21(11):2514–23. https://doi.org/10.1093/hmg/dds070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung KK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, Dawson VL, et al. S-nitrosylation of Parkin regulates ubiquitination and compromises Parkin’s protective function. Science. 2004;304(5675):1328–31. https://doi.org/10.1126/science.1093891.
Article
CAS
PubMed
Google Scholar
Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, et al. S-nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324(5923):102–5. https://doi.org/10.1126/science.1171091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selvaraju V, Taylor BS, Shasha M, Fang F, Emrullah Y, Igor V, et al. Somatic mutations of the Parkinson’s disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet. 2010;42(1):77–82. https://doi.org/10.1038/ng.491.
Article
CAS
Google Scholar
Hristova VA, Beasley SA, Rylett RJ, Shaw GS. Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile Parkinson-related E3 ligase parkin. J Biol Chem. 2009;284(22):14978. https://doi.org/10.1074/jbc.m808700200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozawa K, Komatsubara AT, Nishimura Y, Sawada T, Kawafune H, Tsumoto H, et al. S-nitrosylation regulates mitochondrial quality control via activation of parkin. Sci Rep. 2013;3(29):2202. https://doi.org/10.1038/srep02202.
Article
PubMed
PubMed Central
Google Scholar
Wahabi K, Perwez A, Rizvi MA. Parkin in Parkinson’s disease and cancer: a double-edged sword. Mol Neurobiol. 2018;55(8):6788–800. https://doi.org/10.1007/s12035-018-0879-1.
Article
CAS
PubMed
Google Scholar
Denison SR, Fang W, Becker NA, Birgitt S, Norman K, Phillips LA, et al. Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene. 2003;22(51):8370. https://doi.org/10.1038/sj.onc.1207072.
Article
CAS
PubMed
Google Scholar
Liu J, Zhang C, Zhao Y, Yue X, Wu H, Huang S, et al. Parkin targets HIF-1alpha for ubiquitination and degradation to inhibit breast tumor progression. Nat Commun. 2017;8(1):1823. https://doi.org/10.1038/s41467-017-01947-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stichel CC, Augustin M, Kühn K, Zhu XR, Engels P, Ullmer C, et al. Parkin expression in the adult mouse brain. Eur J Neurosci. 2010;12(12):4181–94.
Google Scholar
Lee SB, She J, Bo D, Kim JJ, Andrade MD, Jie N, et al. Multiple-level validation identifies PARK2 in the development of lung cancer and chronic obstructive pulmonary disease. Oncotarget. 2016;7(28):44211–23. https://doi.org/10.18632/oncotarget.9954.
Article
PubMed
PubMed Central
Google Scholar
Xiaodong S, Min L, Jihui H, Dengwen L, Youguang L, Xiuchao W, et al. Parkin deficiency contributes to pancreatic tumorigenesis by inducing spindle multipolarity and misorientation. Cell Cycle. 2013;12(7):1133–41. https://doi.org/10.4161/cc.24215.
Article
CAS
Google Scholar
Carroll R, Hollville E, Martin S. Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep. 2014;9(4):1538–53. https://doi.org/10.1016/j.celrep.2014.10.046.
Article
CAS
PubMed
Google Scholar
Wang H, Liu B, Zhang C, Peng G, Liu M, Li D, Gu F, et al. Parkin regulates paclitaxel sensitivity in breast cancer via a microtubule-dependent mechanism. J Pathol. 2010;218(1):76–85. https://doi.org/10.1002/path.2512.
Article
CAS
Google Scholar
Ikeuchi K, Hfujiwara M. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers. Int J Cancer. 2010;125(9):2029–35. https://doi.org/10.1002/ijc.24565.
Article
CAS
Google Scholar
He S, Yang S, Niu M, Zhong Y, Dan G, Zhang Y, et al. HMG-box transcription factor 1: a positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma. Cell Death Dis. 2018;9(2):100. https://doi.org/10.1038/s41419-017-0175-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tay SP, Yeo CC, Chua PJ, Tan HM, Ang AX, Yip DL, et al. Parkin enhances the expression of cyclin-dependent kinase 6 and negatively regulates the proliferation of breast cancer cells. J Biol Chem. 2010;285(38):29231. https://doi.org/10.1074/jbc.M110.108241.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SB, Kim JJ, et al. Parkin regulates mitosis and genomic stability through Cdc20/Cdh1. Mol Cell. 2015;60(1):21–34. https://doi.org/10.1016/j.molcel.2015.08.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer. 2003;3(1):55. https://doi.org/10.1038/nrc967.
Article
CAS
PubMed
Google Scholar
Kaverina I, Straube A. Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol. 2011;22(9):968–74. https://doi.org/10.1016/j.semcdb.2011.09.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010. https://doi.org/10.1002/ijc.25516.
Article
PubMed
Google Scholar
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182. https://doi.org/10.1056/NEJM197111182852108.
Article
CAS
PubMed
Google Scholar
Rs K, Ba K. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4(6):423. https://doi.org/10.1038/nrc1369.
Article
CAS
Google Scholar
Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell. 2002;1(3):219–27. https://doi.org/10.1016/s1535-6108(02)00051-x.
Article
CAS
PubMed
Google Scholar
Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol. 2004;14(6):433–9. https://doi.org/10.1016/j.semcancer.2004.06.006.
Article
CAS
PubMed
Google Scholar
Mitsutoshi K, Hiroki Y, Hideki K, Takashi W, Wade PA, Eling TE. DNA methylation-mediated silencing of nonsteroidal anti-inflammatory drug-activated gene (NAG-1/GDF15) in glioma cell lines. Int J Cancer. 2011;130(2):267–77. https://doi.org/10.1002/ijc.26082.
Article
CAS
Google Scholar
Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2010;121(11):2373–80. https://doi.org/10.1002/ijc.23173.
Article
CAS
Google Scholar
Danesh J, Kaptoge S, Mann AG, Sarwar N, Wood A, Angleman SB, et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med. 2008;5(4):e78. https://doi.org/10.1371/journal.pmed.0050078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popa C, Netea MG, van Riel PL, Jw VDM, Stalenhoef AF. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 2007;48(4):751–62. https://doi.org/10.1194/jlr.R600021-JLR200.
Article
CAS
PubMed
Google Scholar
Rom O, Avezov K, Aizenbud D, Reznick AZ. Cigarette smoking and inflammation revisited. Respir Physiol Neurobiol. 2013;187(1):5–10. https://doi.org/10.1016/j.resp.2013.01.013.
Article
CAS
PubMed
Google Scholar
Freedman DM, Pfeiffer RM. Factors in association between parkinson disease and risk of cancer in Taiwan. JAMA Oncol. 2016;2(1):144. https://doi.org/10.1001/jamaoncol.2015.4151.
Article
PubMed
Google Scholar