Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. https://doi.org/10.1126/science.1160809.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin R, Zhou X, Huang W, Zhao D, Lv L, Xiong Y, et al. Acetylation control of cancer cell metabolism. Curr Pharm Des. 2014;20:2627–33.
Article
PubMed
CAS
Google Scholar
Qiu Z, Guo W, Wang Q, Chen Z, Huang S, Zhao F, et al. MicroRNA-124 reduces the pentose phosphate pathway and proliferation by targeting PRPS1 and RPIA mRNAs in human colorectal cancer cells. Gastroenterology. 2015;149(1587–98):e11. https://doi.org/10.1053/j.gastro.2015.07.050.
Article
CAS
Google Scholar
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200. https://doi.org/10.1126/sciadv.1600200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, et al. Tetrameric Acetyl-CoA Acetyltransferase 1 is important for tumor growth. Mol Cell. 2016;64:859–74. https://doi.org/10.1016/j.molcel.2016.10.014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang J, Zhu ZH, Yang HB, Zhang Y, Zhao XN, Zhang M, et al. Cullin 3 targets methionine adenosyltransferase IIalpha for ubiquitylation-mediated degradation and regulates colorectal cancer cell proliferation. FEBS J. 2016;283:2390–402. https://doi.org/10.1111/febs.13759.
Article
PubMed
CAS
Google Scholar
Wang YP, Zhou W, Wang J, Huang X, Zuo Y, Wang TS, et al. Arginine methylation of MDH1 by CARM1 inhibits glutamine metabolism and suppresses pancreatic cancer. Mol Cell. 2016;64:673–87. https://doi.org/10.1016/j.molcel.2016.09.028.
Article
PubMed
CAS
Google Scholar
Zhang Y, Xu YY, Yao CB, Li JT, Zhao XN, Yang HB, et al. Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone. Autophagy. 2017;13:538–53. https://doi.org/10.1080/15548627.2016.1268302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo W, Qiu Z, Wang Z, Wang Q, Tan N, Chen T, et al. MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer. Hepatology. 2015;62:1132–44. https://doi.org/10.1002/hep.27929.
Article
PubMed
CAS
Google Scholar
Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31. https://doi.org/10.1038/nrclinonc.2016.60.
Article
PubMed
CAS
Google Scholar
Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17:351–9. https://doi.org/10.1038/ncb3124.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, et al. Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma. Biochem Biophys Acta. 2016;1866:177–88. https://doi.org/10.1016/j.bbcan.2016.09.001.
Article
PubMed
CAS
Google Scholar
Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell. 2016;166:288–98. https://doi.org/10.1016/j.cell.2016.05.051.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kinnaird A, Zhao S, Wellen KE, Michelakis ED. Metabolic control of epigenetics in cancer. Nat Rev Cancer. 2016;16:694–707. https://doi.org/10.1038/nrc.2016.82.
Article
PubMed
CAS
Google Scholar
Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL, et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell. 2014;54:820–31. https://doi.org/10.1016/j.molcel.2014.04.026.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaelin WG Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell. 2013;153:56–69. https://doi.org/10.1016/j.cell.2013.03.004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer Genome Landsc. Science. 2013;339:1546–58. https://doi.org/10.1126/science.1235122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 2014;54:716–27. https://doi.org/10.1016/j.molcel.2014.05.015.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16:519–32. https://doi.org/10.1038/nrm4043.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11:726–34. https://doi.org/10.1038/nrc3130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012;148:24–8. https://doi.org/10.1016/j.cell.2012.01.001.
Article
PubMed
CAS
Google Scholar
Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochem Biophys Acta. 2014;1839:627–43. https://doi.org/10.1016/j.bbagrm.2014.03.001.
Article
PubMed
CAS
Google Scholar
Li T, Liu M, Feng X, Wang Z, Das I, Xu Y, et al. Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem. 2014;289:3775–85. https://doi.org/10.1074/jbc.M113.531640.
Article
PubMed
CAS
Google Scholar
Xu SN, Wang TS, Li X, Wang YP. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation. Sci Rep. 2016;6:32734. https://doi.org/10.1038/srep32734.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng X. Structural and functional coordination of DNA and histone methylation. Cold Spring Harbor Perspect Biol. 2014. https://doi.org/10.1101/cshperspect.a018747.
Article
Google Scholar
Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, et al. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell. 2010;39:222–33. https://doi.org/10.1016/j.molcel.2010.07.008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439:811–6. https://doi.org/10.1038/nature04433.
Article
PubMed
CAS
Google Scholar
Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A, et al. Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun. 2016;7:11974. https://doi.org/10.1038/ncomms11974.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell. 2017;65:8–24. https://doi.org/10.1016/j.molcel.2016.11.003.
Article
PubMed
CAS
Google Scholar
Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20. https://doi.org/10.1038/nrg3354.
Article
PubMed
CAS
Google Scholar
Pastor WA, Aravind L, Rao A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 2013;14:341–56. https://doi.org/10.1038/nrm3589.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell. 2011;42:426–37. https://doi.org/10.1016/j.molcel.2011.05.004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009;324:1076–80. https://doi.org/10.1126/science.1164097.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell. 2014;158:84–97. https://doi.org/10.1016/j.cell.2014.04.046.
Article
PubMed
CAS
Google Scholar
Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 2013;51:506–18. https://doi.org/10.1016/j.molcel.2013.07.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saunders LR, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007;26:5489–504. https://doi.org/10.1038/sj.onc.1210616.
Article
PubMed
CAS
Google Scholar
Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 2011;42:719–30. https://doi.org/10.1016/j.molcel.2011.04.025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 2013;23:464–76. https://doi.org/10.1016/j.ccr.2013.02.005.
Article
PubMed
CAS
Google Scholar
Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen LL, Liu LX, et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 2014;33:1304–20. https://doi.org/10.1002/embj.201387224.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang HB, Xu YY, Zhao XN, Zou SW, Zhang Y, Zhang M, et al. Acetylation of MAT IIalpha represses tumour cell growth and is decreased in human hepatocellular cancer. Nat Commun. 2015;6:6973. https://doi.org/10.1038/ncomms7973.
Article
PubMed
CAS
Google Scholar
Cai J, Zuo Y, Wang T, Cao Y, Cai R, Chen FL, et al. A crucial role of SUMOylation in modulating Sirt6 deacetylation of H3 at lysine 56 and its tumor suppressive activity. Oncogene. 2016;35:4949–56. https://doi.org/10.1038/onc.2016.24.
Article
PubMed
CAS
Google Scholar
Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell. 2009;136:62–74. https://doi.org/10.1016/j.cell.2008.10.052.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012;487:114–8. https://doi.org/10.1038/nature11043.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J. 2016;35:1488–503. https://doi.org/10.15252/embj.201593499.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235. https://doi.org/10.1038/ncomms12235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem. 2013;288:31350–6. https://doi.org/10.1074/jbc.C113.511261.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496:110–3. https://doi.org/10.1038/nature12038.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518:413–6. https://doi.org/10.1038/nature13981.
Article
PubMed
CAS
Google Scholar
Simpson NE, Tryndyak VP, Pogribna M, Beland FA, Pogribny IP. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype. Epigenetics. 2012;7:1413–20. https://doi.org/10.4161/epi.22713.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilhelm JA, McCarty KS. The uptake and turnover of acetate in HeLa cell histone fractions. Cancer Res. 1970;30:418–25.
PubMed
CAS
Google Scholar
Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159:1603–14. https://doi.org/10.1016/j.cell.2014.11.025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014;159:1591–602. https://doi.org/10.1016/j.cell.2014.11.020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27:57–71. https://doi.org/10.1016/j.ccell.2014.12.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960. https://doi.org/10.1038/ncomms11960.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bulusu V, Tumanov S, Michalopoulou E, van den Broek NJ, MacKay G, Nixon C, et al. Acetate recapturing by nuclear acetyl-coa synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 2017;18:647–58. https://doi.org/10.1016/j.celrep.2016.12.055.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao S, Torres A, Henry RA, Trefely S, Wallace M, Lee JV, et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 2016;17:1037–52. https://doi.org/10.1016/j.celrep.2016.09.069.
Article
PubMed
PubMed Central
CAS
Google Scholar
McDonnell E, Crown SB, Fox DB, Kitir B, Ilkayeva OR, Olsen CA, et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 2016;17:1463–72. https://doi.org/10.1016/j.celrep.2016.10.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carrer A, Parris JL, Trefely S, Henry RA, Montgomery DC, Torres A, et al. Impact of a high-fat diet on tissue acyl-coa and histone acetylation levels. J Biol Chem. 2017;292:3312–22. https://doi.org/10.1074/jbc.M116.750620.
Article
PubMed
PubMed Central
CAS
Google Scholar
Newman AC, Maddocks ODK. One-carbon metabolism in cancer. Br J Cancer. 2017;116:1499–504. https://doi.org/10.1038/bjc.2017.118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Teperino R, Schoonjans K, Auwerx J. Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab. 2010;12:321–7. https://doi.org/10.1016/j.cmet.2010.09.004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 2012;22:168–77. https://doi.org/10.1038/cr.2011.177.
Article
PubMed
CAS
Google Scholar
Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534:553–7. https://doi.org/10.1038/nature18014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44. https://doi.org/10.1038/nature08617.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30. https://doi.org/10.1016/j.ccr.2010.12.014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8. https://doi.org/10.1038/nature10860.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell. 2015;57:662–73. https://doi.org/10.1016/j.molcel.2014.12.023.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. New Engl J Med. 2009;361:1058–66. https://doi.org/10.1056/NEJMoa0903840.
Article
PubMed
CAS
Google Scholar
Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231–9. https://doi.org/10.1093/hmg/ddi227.
Article
PubMed
CAS
Google Scholar
Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326–38. https://doi.org/10.1101/gad.191056.112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Intlekofer AM, Dematteo RG, Venneti S, Finley LW, Lu C, Judkins AR, et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 2015;22:304–11. https://doi.org/10.1016/j.cmet.2015.06.023.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oldham WM, Clish CB, Yang Y, Loscalzo J. Hypoxia-mediated increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab. 2015;22:291–303. https://doi.org/10.1016/j.cmet.2015.06.021.
Article
PubMed
PubMed Central
CAS
Google Scholar
Intlekofer AM, Wang B, Liu H, Shah H, Carmona-Fontaine C, Rustenburg AS, et al. L-2-hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol. 2017;13:494–500. https://doi.org/10.1038/nchembio.2307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56:1194–8.
PubMed
CAS
Google Scholar
Hou H, Zhao Y, Li C, Wang M, Xu X, Jin Y. Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells. Sci Rep. 2017;7:1759. https://doi.org/10.1038/s41598-017-01956-1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schartner EP, Henderson MR, Purdey M, Dhatrak D, Monro TM, Gill PG, et al. Cancer detection in human tissue samples using a fiber-tip pH probe. Cancer Res. 2016;76:6795–801. https://doi.org/10.1158/0008-5472.CAN-16-1285.
Article
PubMed
CAS
Google Scholar
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48:612–26. https://doi.org/10.1016/j.molcel.2012.08.033.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cancer Genome Atlas Research N,, et al, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. New Engl J Med. 2013;368:2059–74. https://doi.org/10.1056/NEJMoa1301689.
Article
CAS
Google Scholar
Wang JH, Chen WL, Li JM, Wu SF, Chen TL, Zhu YM, et al. Prognostic significance of 2-hydroxyglutarate levels in acute myeloid leukemia in China. Proc Natl Acad Sci USA. 2013;110:17017–22. https://doi.org/10.1073/pnas.1315558110.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12:463–9. https://doi.org/10.1038/embor.2011.43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fan J, Krautkramer KA, Feldman JL, Denu JM. Metabolic regulation of histone post-translational modifications. ACS Chem Biol. 2015;10:95–108. https://doi.org/10.1021/cb500846u.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee JH, et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017;66(684–97):e9. https://doi.org/10.1016/j.molcel.2017.04.026.
Article
CAS
Google Scholar
Wang T, Yu Q, Li J, Hu B, Zhao Q, Ma C, et al. O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat Cell Biol. 2017. https://doi.org/10.1038/ncb3562.
Article
PubMed
PubMed Central
Google Scholar
Bowsher CG, Tobin AK. Compartmentation of metabolism within mitochondria and plastids. J Exp Bot. 2001;52:513–27.
Article
PubMed
CAS
Google Scholar
Rogers JK, Church GM. Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA. 2016;113:2388–93. https://doi.org/10.1073/pnas.1600375113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Q, Liu X, Gao W, Li P, Hou J, Li J, et al. Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-N-acetylglucosamine transferase (OGT). J Biol Chem. 2014;289:5986–96. https://doi.org/10.1074/jbc.M113.524140.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koukourakis MI, Giatromanolaki A, Harris AL, Sivridis E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 2006;66:632–7. https://doi.org/10.1158/0008-5472.CAN-05-3260.
Article
PubMed
CAS
Google Scholar
Ho PC, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 2015;162:1217–28. https://doi.org/10.1016/j.cell.2015.08.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wenes M, Shang M, Di Matteo M, Goveia J, Martin-Perez R, Serneels J, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 2016;24:701–15. https://doi.org/10.1016/j.cmet.2016.09.008.
Article
PubMed
CAS
Google Scholar
Dickson I. Pancreatic cancer: stromal-cancer cell crosstalk supports tumour metabolism. Nat Rev Gastroenterol Hepatol. 2016;13:558–9. https://doi.org/10.1038/nrgastro.2016.137.
Article
PubMed
CAS
Google Scholar
Brisson L, Banski P, Sboarina M, Dethier C, Danhier P, Fontenille MJ, et al. Lactate dehydrogenase B controls lysosome activity and autophagy in cancer. Cancer Cell. 2016;30:418–31. https://doi.org/10.1016/j.ccell.2016.08.005.
Article
PubMed
CAS
Google Scholar
Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536:479–83. https://doi.org/10.1038/nature19084.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16:9–17. https://doi.org/10.1016/j.cmet.2012.06.001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. 2012;11:596–606. https://doi.org/10.1016/j.stem.2012.10.002.
Article
PubMed
PubMed Central
CAS
Google Scholar