Ogino S, Galon J, Fuchs CS, Dranoff G. Cancer immunology—analysis of host and tumor factors for personalized medicine. Nat Rev Clin Oncol. 2011;8(12):711–9. https://doi.org/10.1038/nrclinonc.2011.122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol. 2017;52(3):265–75. https://doi.org/10.1007/s00535-016-1272-3.
Article
PubMed
Google Scholar
Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut. 2011;60(3):397–411. https://doi.org/10.1136/gut.2010.217182.
Article
PubMed
Google Scholar
U.S. National Library of Medicine. What is precision medicine? https://ghr.nlm.nih.gov/primer/precisionmedicine/definition. Accessed 16 May 2019.
Cherny NI, de Vries EG, Emanuel L, Fallowfield L, Francis PA, Gabizon A, et al. Words matter: distinguishing “personalized medicine” and “biologically personalized therapeutics”. J Natl Cancer Inst. 2014. https://doi.org/10.1093/jnci/dju321.
Article
PubMed
PubMed Central
Google Scholar
Shariat SF, Gust KM. Immune therapy meets precision medicine. Lancet Oncol. 2017;18(3):271–3. https://doi.org/10.1016/s1470-2045(17)30098-0.
Article
PubMed
Google Scholar
La Porta CAM, Zapperi S. Complexity in cancer stem cells and tumor evolution: toward precision medicine. Semin Cancer Biol. 2017;44:3–9. https://doi.org/10.1016/j.semcancer.2017.02.007.
Article
CAS
PubMed
Google Scholar
Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27.
Article
CAS
PubMed
Google Scholar
Thomas L. On immunosurveillance in human cancer. Yale J Biol Med. 1982;55(3–4):329–33.
CAS
PubMed
PubMed Central
Google Scholar
Corthay A. Does the immune system naturally protect against cancer? Front Immunol. 2014;5:197. https://doi.org/10.3389/fimmu.2014.00197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3(Surg Sect):1–48.
CAS
PubMed
PubMed Central
Google Scholar
Singh AK, McGuirk JP. Allogeneic stem cell transplantation: a historical and scientific overview. Cancer Res. 2016;76(22):6445–51. https://doi.org/10.1158/0008-5472.can-16-1311.
Article
CAS
PubMed
Google Scholar
Mittal S, Marshall NA, Barker RN, Vickers MA. Immunomodulation against leukemias and lymphomas: a realistic future treatment? Crit Rev Oncol/Hematol. 2008;65(2):101–8. https://doi.org/10.1016/j.critrevonc.2007.05.004.
Article
CAS
Google Scholar
Hentschke P, Barkholt L, Uzunel M, Mattsson J, Wersall P, Pisa P, et al. Low-intensity conditioning and hematopoietic stem cell transplantation in patients with renal and colon carcinoma. Bone Marrow Transplant. 2003;31(4):253–61. https://doi.org/10.1038/sj.bmt.1703811.
Article
CAS
PubMed
Google Scholar
Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–6. https://doi.org/10.1242/jcs.116392.
Article
CAS
PubMed
Google Scholar
Belli C, Trapani D, Viale G, D’Amico P, Duso BA, Della Vigna P, et al. Targeting the microenvironment in solid tumors. Cancer Treat Rev. 2018;65:22–32. https://doi.org/10.1016/j.ctrv.2018.02.004.
Article
CAS
PubMed
Google Scholar
Saifi M, Maran A, Raynaud P, Picot MC, Quittet P, Cartron G, et al. High ratio of interfollicular CD8/FOXP3-positive regulatory T cells is associated with a high FLIPI index and poor overall survival in follicular lymphoma. Exp Ther Med. 2010;1(6):933–8. https://doi.org/10.3892/etm.2010.146.
Article
PubMed
PubMed Central
Google Scholar
Michiels C, Tellier C, Feron O. Cycling hypoxia: a key feature of the tumor microenvironment. Biochem Biophys Acta. 2016;1866(1):76–86. https://doi.org/10.1016/j.bbcan.2016.06.004.
Article
CAS
PubMed
Google Scholar
Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412. https://doi.org/10.1155/2015/549412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-II expression by tumor cells in cancer. Clin Cancer Res. 2019;25(8):2392–402. https://doi.org/10.1158/1078-0432.ccr-18-3200.
Article
PubMed
Google Scholar
Vahidian F, Duijf PHG, Safarzadeh E, Derakhshani A, Baghbanzadeh A, Baradaran B. Interactions between cancer stem cells, immune system and some environmental components: friends or foes? Immunol Lett. 2019;208:19–29. https://doi.org/10.1016/j.imlet.2019.03.004.
Article
CAS
PubMed
Google Scholar
Srivastava PK, Duan F. Harnessing the antigenic fingerprint of each individual cancer for immunotherapy of human cancer: genomics shows a new way and its challenges. Cancer Immunol Immunother. 2013;62(5):967–74. https://doi.org/10.1007/s00262-013-1422-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bobisse S, Foukas PG, Coukos G, Harari A. Neoantigen-based cancer immunotherapy. Ann Transl Med. 2016;4(14):262. https://doi.org/10.21037/atm.2016.06.17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai W, Zhou D, Wu W, Tan WL, Wang J, Zhou C, et al. MHC class II restricted neoantigen peptides predicted by clonal mutation analysis in lung adenocarcinoma patients: implications on prognostic immunological biomarker and vaccine design. BMC Genom. 2018;19(1):582. https://doi.org/10.1186/s12864-018-4958-5.
Article
CAS
Google Scholar
Highlights of prescribing information. KEYTRUDA® (pembrolizumab) for injection, for intravenous use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014lbl.pdf. Accessed 16 May 2019.
Yang L, Lin PC. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol. 2017;47:185–95. https://doi.org/10.1016/j.semcancer.2017.08.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs make the call in cancer personalized medicine. Front Cell Dev Biol. 2017;5:86. https://doi.org/10.3389/fcell.2017.00086.
Article
PubMed
PubMed Central
Google Scholar
Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D. Regulation of inflammation by microbiota interactions with the host. Nat Immunol. 2017;18(8):851–60. https://doi.org/10.1038/ni.3780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Destexhe E, Prinsen MK, van Scholl I, Kuper CF, Garcon N, Veenstra S, et al. Evaluation of C-reactive protein as an inflammatory biomarker in rabbits for vaccine nonclinical safety studies. J Pharmacol Toxicol Methods. 2013;68(3):367–73. https://doi.org/10.1016/j.vascn.2013.04.003.
Article
CAS
PubMed
Google Scholar
Palmer CS, Hussain T, Duette G, Weller TJ, Ostrowski M, Sada-Ovalle I, et al. Regulators of glucose metabolism in CD4(+) and CD8(+) T Cells. Int Rev Immunol. 2016;35(6):477–88. https://doi.org/10.3109/08830185.2015.1082178.
Article
CAS
PubMed
Google Scholar
Catalan E, Charni S, Jaime P, Aguilo JI, Enriquez JA, Naval J, et al. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. Oncoimmunology. 2015;4(1):e985924. https://doi.org/10.4161/2162402x.2014.985924.
Article
PubMed
PubMed Central
Google Scholar
Pampena MB, Cartar HC, Cueto GR, Levy EM, Blanco PA, Barrio MM, et al. Dissecting the immune stimulation promoted by CSF-470 vaccine plus adjuvants in cutaneous melanoma patients: long term antitumor immunity and short term release of acute inflammatory reactants. Front Immunol. 2018;9:2531. https://doi.org/10.3389/fimmu.2018.02531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawamura J, Sugiura F, Sukegawa Y, Yoshioka Y, Hida JI, Hazama S, et al. Multicenter, phase II clinical trial of peptide vaccination with oral chemotherapy following curative resection for stage III colorectal cancer. Oncol Lett. 2018;15(4):4241–7. https://doi.org/10.3892/ol.2018.7905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obara W, Hara I, Kato Y, Kato R, Inoue K, Sato F, et al. Immunotherapy with cancer peptides in combination with intravesical bacillus Calmette–Guerin for patients with non-muscle invasive bladder cancer. Cancer Immunol Immunother. 2018;67(9):1371–80. https://doi.org/10.1007/s00262-018-2197-x.
Article
CAS
PubMed
Google Scholar
Miyazawa M, Katsuda M, Maguchi H, Katanuma A, Ishii H, Ozaka M, et al. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int J Cancer. 2017;140(4):973–82. https://doi.org/10.1002/ijc.30510.
Article
CAS
PubMed
Google Scholar
Noguchi M, Moriya F, Koga N, Matsueda S, Sasada T, Yamada A, et al. A randomized phase II clinical trial of personalized peptide vaccination with metronomic low-dose cyclophosphamide in patients with metastatic castration-resistant prostate cancer. Cancer Immunol Immunother. 2016;65(2):151–60. https://doi.org/10.1007/s00262-015-1781-6.
Article
CAS
PubMed
Google Scholar
Takahashi R, Toh U, Iwakuma N, Takenaka M, Otsuka H, Furukawa M, et al. Feasibility study of personalized peptide vaccination for metastatic recurrent triple-negative breast cancer patients. Breast Cancer Res. 2014;16(4):R70. https://doi.org/10.1186/bcr3685.
Article
PubMed
PubMed Central
Google Scholar
Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, et al. Long-term vaccination with multiple peptides derived from cancer-testis antigens can maintain a specific T-cell response and achieve disease stability in advanced biliary tract cancer. Clin Cancer Res. 2013;19(8):2224–31. https://doi.org/10.1158/1078-0432.ccr-12-3592.
Article
CAS
PubMed
Google Scholar
Yoshimoto T, Morishima N, Okumura M, Chiba Y, Xu M, Mizuguchi J. Interleukins and cancer immunotherapy. Immunotherapy. 2009;1(5):825–44. https://doi.org/10.2217/imt.09.46.
Article
CAS
PubMed
Google Scholar
Humphries C. Adoptive cell therapy: honing that killer instinct. Nature. 2013;504(7480):S13–5. https://doi.org/10.1038/504S13a.
Article
CAS
PubMed
Google Scholar
Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol. 2011;8(10):577–85. https://doi.org/10.1038/nrclinonc.2011.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 2015;75(1):5–10. https://doi.org/10.1158/0008-5472.can-14-2538.
Article
CAS
PubMed
Google Scholar
Gao X, Mi Y, Guo N, Xu H, Xu L, Gou X, et al. Cytokine-induced killer cells as pharmacological tools for cancer immunotherapy. Front Immunol. 2017;8:774. https://doi.org/10.3389/fimmu.2017.00774.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stavrou D, Bilzer T, Anzil AP, Hulten M, Kaldrymidou E. Reactivity of tumor-infiltrating, blood, spleen and lymph node lymphocytes against syngeneic glioma target cells. Anticancer Res. 1981;1(3):125–34.
CAS
PubMed
Google Scholar
Lloyd KO. Tumor antigens known to be immunogenic in man. Ann N Y Acad Sci. 1993;690:50–8.
Article
CAS
PubMed
Google Scholar
Finn OJ, Jerome KR, Henderson RA, Pecher G, Domenech N, Magarian-Blander J, et al. MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol Rev. 1995;145:61–89.
Article
CAS
PubMed
Google Scholar
Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A, Rezaei N. Cancer/testis antigens: expression, regulation, tumor invasion, and use in immunotherapy of cancers. Immunol Invest. 2016;45(7):619–40. https://doi.org/10.1080/08820139.2016.1197241.
Article
CAS
PubMed
Google Scholar
Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, et al. Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity. J Intern Med. 2012;271(2):183–92. https://doi.org/10.1111/j.1365-2796.2011.02496.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heninger E, Krueger TE, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol. 2015;6:29. https://doi.org/10.3389/fimmu.2015.00029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kortenhorst MS, Wissing MD, Rodriguez R, Kachhap SK, Jans JJ, Van der Groep P, et al. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors. Epigenetics. 2013;8(9):907–20. https://doi.org/10.4161/epi.25574.
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, et al. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy. Int Rev Immunol. 2015;34(2):154–87. https://doi.org/10.3109/08830185.2015.1018419.
Article
CAS
PubMed
Google Scholar
Mardiros A, Dos Santos C, McDonald T, Brown CE, Wang X, Budde LE, et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122(18):3138–48. https://doi.org/10.1182/blood-2012-12-474056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou Y, Xu W, Li J. Chimeric antigen receptor-modified T cell therapy in chronic lymphocytic leukemia. J Hematol Oncol. 2018;11(1):130. https://doi.org/10.1186/s13045-018-0676-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. https://doi.org/10.1056/NEJMoa1215134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59. https://doi.org/10.1056/NEJMoa1709919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51. https://doi.org/10.1038/mt.2010.24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306. https://doi.org/10.1182/blood-2017-06-793141.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frey NV, Porter DL. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Progr. 2016;2016(1):567–72. https://doi.org/10.1182/asheducation-2016.1.567.
Article
Google Scholar
U.S. National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?term=CART-cells&Search=Search. Accessed 16 May 2019.
Shah NN, Maatman T, Hari P, Johnson B. Multi targeted CAR-T cell therapies for B-cell malignancies. Front Oncol. 2019;9:146. https://doi.org/10.3389/fonc.2019.00146.
Article
PubMed
PubMed Central
Google Scholar
Schutz A, Oertli D, Marti WR, Noppen C, Padovan E, Spagnoli GC, et al. Immunogenicity of nonreplicating recombinant vaccinia expressing HLA-A201 targeted or complete MART-1/Melan-A antigen. Cancer Gene Ther. 2001;8(9):655–61. https://doi.org/10.1038/sj.cgt.7700351.
Article
CAS
PubMed
Google Scholar
Lafont V, Sanchez F, Laprevotte E, Michaud HA, Gros L, Eliaou JF, et al. Plasticity of gammadelta T cells: impact on the anti-tumor response. Front Immunol. 2014;5:622. https://doi.org/10.3389/fimmu.2014.00622.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Wu K, Hu Y, Sheng L, Tie R, Wang B, et al. Gammadelta T cell and other immune cells crosstalk in cellular immunity. J Immunol Res. 2014;2014:960252. https://doi.org/10.1155/2014/960252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med. 2003;197(2):163–8. https://doi.org/10.1084/jem.20021500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poggi A, Zocchi MR. Gammadelta T lymphocytes as a first line of immune defense: old and new ways of antigen recognition and implications for cancer immunotherapy. Front Immunol. 2014;5:575. https://doi.org/10.3389/fimmu.2014.00575.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunne MR, Mangan BA, Madrigal-Estebas L, Doherty DG. Preferential Th1 cytokine profile of phosphoantigen-stimulated human Vgamma9Vdelta2 T cells. Mediat Inflamm. 2010;2010:704941. https://doi.org/10.1155/2010/704941.
Article
CAS
Google Scholar
Lafont V, Liautard J, Liautard JP, Favero J. Production of TNF-alpha by human V gamma 9V delta 2 T cells via engagement of Fc gamma RIIIA, the low affinity type 3 receptor for the Fc portion of IgG, expressed upon TCR activation by nonpeptidic antigen. J Immunol. 2001;166(12):7190–9.
Article
CAS
PubMed
Google Scholar
Wesch D, Peters C, Siegers GM. Human gamma delta T regulatory cells in cancer: fact or fiction? Front Immunol. 2014;5:598. https://doi.org/10.3389/fimmu.2014.00598.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burjanadze M, Condomines M, Reme T, Quittet P, Latry P, Lugagne C, et al. In vitro expansion of gamma delta T cells with anti-myeloma cell activity by Phosphostim and IL-2 in patients with multiple myeloma. Br J Haematol. 2007;139(2):206–16. https://doi.org/10.1111/j.1365-2141.2007.06754.x.
Article
CAS
PubMed
Google Scholar
Kunzmann V, Smetak M, Kimmel B, Weigang-Koehler K, Goebeler M, Birkmann J, et al. Tumor-promoting versus tumor-antagonizing roles of gammadelta T cells in cancer immunotherapy: results from a prospective phase I/II trial. J Immunother. 2012;35(2):205–13. https://doi.org/10.1097/cji.0b013e318245bb1e.
Article
CAS
PubMed
Google Scholar
Paul S, Lal G. Regulatory and effector functions of gamma-delta (gammadelta) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer. 2016;139(5):976–85. https://doi.org/10.1002/ijc.30109.
Article
CAS
PubMed
Google Scholar
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the efficiency of Vgamma9Vdelta2 T-cell immunotherapy in cancer. Front Immunol. 2018;9:800. https://doi.org/10.3389/fimmu.2018.00800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Golay J, Semenzato G, Rambaldi A, Foa R, Gaidano G, Gamba E, et al. Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. mAbs. 2013;5(6):826–37. https://doi.org/10.4161/mabs.26008.
Article
PubMed
PubMed Central
Google Scholar
Davis TA, White CA, Grillo-Lopez AJ, Velasquez WS, Link B, Maloney DG, et al. Single-agent monoclonal antibody efficacy in bulky non-Hodgkin’s lymphoma: results of a phase II trial of rituximab. J Clin Oncol. 1999;17(6):1851–7. https://doi.org/10.1200/jco.1999.17.6.1851.
Article
CAS
PubMed
Google Scholar
Braza MS, Klein B, Fiol G, Rossi JF. gammadelta T-cell killing of primary follicular lymphoma cells is dramatically potentiated by GA101, a type II glycoengineered anti-CD20 monoclonal antibody. Haematologica. 2011;96(3):400–7. https://doi.org/10.3324/haematol.2010.029520.
Article
CAS
PubMed
Google Scholar
Deniger DC, Moyes JS, Cooper LJ. Clinical applications of gamma delta T cells with multivalent immunity. Front Immunol. 2014;5:636. https://doi.org/10.3389/fimmu.2014.00636.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braza MS, Klein B. Anti-tumour immunotherapy with Vgamma9Vdelta2 T lymphocytes: from the bench to the bedside. Br J Haematol. 2013;160(2):123–32. https://doi.org/10.1111/bjh.12090.
Article
CAS
PubMed
Google Scholar
Capsomidis A, Benthall G, Van Acker HH, Fisher J, Kramer AM, Abeln Z, et al. Chimeric antigen receptor-engineered human gamma delta t cells: enhanced cytotoxicity with retention of cross presentation. Mol Ther. 2018;26(2):354–65. https://doi.org/10.1016/j.ymthe.2017.12.001.
Article
CAS
PubMed
Google Scholar
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22(11):633–40.
Article
CAS
PubMed
Google Scholar
Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25(2):331–42. https://doi.org/10.1016/j.immuni.2006.06.013.
Article
CAS
PubMed
Google Scholar
Thomas LM, Peterson ME, Long EO. Cutting edge: NK cell licensing modulates adhesion to target cells. J Immunol. 2013;191(8):3981–5. https://doi.org/10.4049/jimmunol.1301159.
Article
CAS
PubMed
Google Scholar
Rolle A, Pollmann J, Cerwenka A. Memory of infections: an emerging role for natural killer cells. PLoS Pathog. 2013;9(9):e1003548. https://doi.org/10.1371/journal.ppat.1003548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klingemann H, Boissel L, Toneguzzo F. Natural killer cells for immunotherapy—advantages of the NK-92 Cell line over blood NK cells. Front Immunol. 2016;7:91. https://doi.org/10.3389/fimmu.2016.00091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10(3):230–52. https://doi.org/10.1038/cmi.2013.10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ochoa AC, Gromo G, Alter BJ, Sondel PM, Bach FH. Long-term growth of lymphokine-activated killer (LAK) cells: role of anti-CD3, beta-IL 1, interferon-gamma and -beta. J Immunol. 1987;138(8):2728–33.
CAS
PubMed
Google Scholar
Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. J Transl Med. 2013;11:83. https://doi.org/10.1186/1479-5876-11-83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139–49. https://doi.org/10.1084/jem.174.1.139.
Article
CAS
PubMed
Google Scholar
Muller S, Schulz A, Reiss U, Schwarz K, Schreiner T, Wiesneth M, et al. Definition of a critical T cell threshold for prevention of GVHD after HLA non-identical PBPC transplantation in children. Bone Marrow Transplant. 1999;24(6):575–81. https://doi.org/10.1038/sj.bmt.1701970.
Article
CAS
PubMed
Google Scholar
Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955–9. https://doi.org/10.1200/jco.2009.24.4590.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali J, Harper I, Bolton E, Bradley JA, Pettigrew G. Recipient natural killer cell allorecognition of passenger donor lymphocytes and its effect on adaptive alloimmunity after transplantation. Lancet. 2015;385(Suppl 1):S18. https://doi.org/10.1016/s0140-6736(15)60333-6.
Article
PubMed
Google Scholar
Koehl U, Kalberer C, Spanholtz J, Lee DA, Miller JS, Cooley S, et al. Advances in clinical NK cell studies: donor selection, manufacturing and quality control. Oncoimmunology. 2016;5(4):e1115178. https://doi.org/10.1080/2162402x.2015.1115178.
Article
CAS
PubMed
Google Scholar
Lowry LE, Zehring WA. Potentiation of natural killer cells for cancer immunotherapy: a review of literature. Front Immunol. 2017;8:1061. https://doi.org/10.3389/fimmu.2017.01061.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korde N, Carlsten M, Lee MJ, Minter A, Tan E, Kwok M, et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica. 2014;99(6):e81–3. https://doi.org/10.3324/haematol.2013.103085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verneris MR, Miller JS. The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells. Br J Haematol. 2009;147(2):185–91. https://doi.org/10.1111/j.1365-2141.2009.07768.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 2014;8(2):297–310. https://doi.org/10.1016/j.molonc.2013.12.001.
Article
CAS
PubMed
Google Scholar
Mehta RS, Rezvani K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 2018;9:283. https://doi.org/10.3389/fimmu.2018.00283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carreno LJ, Kharkwal SS, Porcelli SA. Optimizing NKT cell ligands as vaccine adjuvants. Immunotherapy. 2014;6(3):309–20. https://doi.org/10.2217/imt.13.175.
Article
CAS
PubMed
Google Scholar
Nair S, Dhodapkar MV. Natural killer T cells in cancer immunotherapy. Front Immunol. 2017;8:1178. https://doi.org/10.3389/fimmu.2017.01178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L. Antigen-specific vaccines for cancer treatment. Hum Vaccines Immunother. 2014;10(11):3332–46. https://doi.org/10.4161/21645515.2014.973317.
Article
Google Scholar
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. https://doi.org/10.1038/32588.
Article
CAS
PubMed
Google Scholar
Tarte K, Fiol G, Rossi JF, Klein B. Extensive characterization of dendritic cells generated in serum-free conditions: regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro. Leukemia. 2000;14(12):2182–92.
Article
CAS
PubMed
Google Scholar
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. https://doi.org/10.1056/NEJMoa1001294.
Article
CAS
PubMed
Google Scholar
Maloney DG. Follicular NHL: from antibodies and vaccines to graft-versus-lymphoma effects. Hematol Am Soc Hematol Educ Progr. 2007. https://doi.org/10.1182/asheducation-2007.1.226.
Article
Google Scholar
Bendandi M. Anti-idiotype vaccines for human follicular lymphoma. Leukemia. 2000;14(8):1333–9.
Article
CAS
PubMed
Google Scholar
Thomas SK, Kwak LW. Lymphoma vaccine therapy: next steps after a positive, controlled phase III clinical trial. Semin Oncol. 2012;39(3):253–62. https://doi.org/10.1053/j.seminoncol.2012.02.014.
Article
CAS
PubMed
Google Scholar
Baudard M, Comte F, Conge AM, Mariano-Goulart D, Klein B, Rossi JF. Importance of [18F]fluorodeoxyglucose-positron emission tomography scanning for the monitoring of responses to immunotherapy in follicular lymphoma. Leuk Lymphoma. 2007;48(2):381–8. https://doi.org/10.1080/10428190601094354.
Article
PubMed
Google Scholar
Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15(7):e257–67. https://doi.org/10.1016/s1470-2045(13)70585-0.
Article
CAS
PubMed
Google Scholar
Schon MP, Schon M. TLR7 and TLR8 as targets in cancer therapy. Oncogene. 2008;27(2):190–9. https://doi.org/10.1038/sj.onc.1210913.
Article
CAS
PubMed
Google Scholar
Wimmers F, Schreibelt G, Skold AE, Figdor CG, De Vries IJ. Paradigm shift in dendritic cell-based immunotherapy: from in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front Immunol. 2014;5:165. https://doi.org/10.3389/fimmu.2014.00165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubensky TW Jr, Reed SG. Adjuvants for cancer vaccines. Semin Immunol. 2010;22(3):155–61. https://doi.org/10.1016/j.smim.2010.04.007.
Article
CAS
PubMed
Google Scholar
Pizzurro GA, Barrio MM. Dendritic cell-based vaccine efficacy: aiming for hot spots. Front Immunol. 2015;6:91. https://doi.org/10.3389/fimmu.2015.00091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romagnoli GG, Zelante BB, Toniolo PA, Migliori IK, Barbuto JA. Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Front Immunol. 2014;5:692. https://doi.org/10.3389/fimmu.2014.00692.
Article
CAS
PubMed
Google Scholar
Ciocca DR, Frayssinet P, Cuello-Carrion FD. A pilot study with a therapeutic vaccine based on hydroxyapatite ceramic particles and self-antigens in cancer patients. Cell Stress Chaperones. 2007;12(1):33–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marconato L, Frayssinet P, Rouquet N, Comazzi S, Leone VF, Laganga P, et al. Randomized, placebo-controlled, double-blinded chemoimmunotherapy clinical trial in a pet dog model of diffuse large B-cell lymphoma. Clin Cancer Res. 2014;20(3):668–77. https://doi.org/10.1158/1078-0432.ccr-13-2283.
Article
CAS
PubMed
Google Scholar
Sanchez-Sanchez N, Riol-Blanco L, Rodriguez-Fernandez JL. The multiple personalities of the chemokine receptor CCR1 in dendritic cells. J Immunol. 2006;176(9):5153–9.
Article
CAS
PubMed
Google Scholar
Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018. https://doi.org/10.1126/scitranslmed.aao5931.
Article
PubMed
Google Scholar
Charni S, de Bettignies G, Rathore MG, Aguilo JI, van den Elsen PJ, Haouzi D, et al. Oxidative phosphorylation induces de novo expression of the MHC class I in tumor cells through the ERK5 pathway. J Immunol. 2010;185(6):3498–503. https://doi.org/10.4049/jimmunol.1001250.
Article
CAS
PubMed
Google Scholar
Pampena MB, Levy EM. Natural killer cells as helper cells in dendritic cell cancer vaccines. Front Immunol. 2015;6:13. https://doi.org/10.3389/fimmu.2015.00013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cartron G, Zhao-Yang L, Baudard M, Kanouni T, Rouille V, Quittet P, et al. Granulocyte-macrophage colony-stimulating factor potentiates rituximab in patients with relapsed follicular lymphoma: results of a phase II study. J Clin Oncol. 2008;26(16):2725–31. https://doi.org/10.1200/jco.2007.13.7729.
Article
CAS
PubMed
Google Scholar
Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42. https://doi.org/10.1038/nri3405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lines JL, Sempere LF, Broughton T, Wang L, Noelle R. VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res. 2014;2(6):510–7. https://doi.org/10.1158/2326-6066.cir-14-0072.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witzens-Harig M, Hose D, Junger S, Pfirschke C, Khandelwal N, Umansky L, et al. Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6. Blood. 2013;121(22):4493–503. https://doi.org/10.1182/blood-2012-05-429415.
Article
CAS
PubMed
Google Scholar
Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. https://doi.org/10.1056/NEJMoa1003466.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. https://doi.org/10.3389/fphar.2017.00561.
Article
CAS
PubMed
PubMed Central
Google Scholar
U.S. National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?term=immune+checkpoint+inhibitors+clinical+trials&Search=Search. Accessed 16 May 2019.
Jackson SR, Yuan J, Teague RM. Targeting CD8+ T-cell tolerance for cancer immunotherapy. Immunotherapy. 2014;6(7):833–52. https://doi.org/10.2217/imt.14.51.
Article
CAS
PubMed
Google Scholar
Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014;21(1):15–25. https://doi.org/10.1038/cdd.2013.67.
Article
CAS
PubMed
Google Scholar
Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL, et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature. 2014;510(7505):407–11. https://doi.org/10.1038/nature13444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina-Echeverz J, Aranda F, Berraondo P. Myeloid-derived cells are key targets of tumor immunotherapy. Oncoimmunology. 2014;3:e28398. https://doi.org/10.4161/onci.28398.
Article
PubMed
PubMed Central
Google Scholar
Natarajan G, Oghumu S, Terrazas C, Varikuti S, Byrd JC, Satoskar AR. A Tec kinase BTK inhibitor ibrutinib promotes maturation and activation of dendritic cells. Oncoimmunology. 2016;5(6):e1151592. https://doi.org/10.1080/2162402x.2016.1151592.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115(17):3520–30. https://doi.org/10.1182/blood-2009-09-246124.
Article
CAS
PubMed
Google Scholar
Condomines M, Veyrune JL, Larroque M, Quittet P, Latry P, Lugagne C, et al. Increased plasma-immune cytokines throughout the high-dose melphalan- induced lymphodepletion in patients with multiple myeloma: a window for adoptive immunotherapy. J Immunol. 2010;184(2):1079–84. https://doi.org/10.4049/jimmunol.0804159.
Article
CAS
PubMed
Google Scholar
Rossi JF, Fegueux N, Lu ZY, Legouffe E, Exbrayat C, Bozonnat MC, et al. Optimizing the use of anti-interleukin-6 monoclonal antibody with dexamethasone and 140 mg/m2 of melphalan in multiple myeloma: results of a pilot study including biological aspects. Bone Marrow Transplant. 2005;36(9):771–9. https://doi.org/10.1038/sj.bmt.1705138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perales MA, Sauter CS, Armand P. Fast cars and no brakes: autologous stem cell transplantation as a platform for novel immunotherapies. Biol Blood Marrow Transplant. 2016;22(1):17–22. https://doi.org/10.1016/j.bbmt.2015.10.014.
Article
CAS
PubMed
Google Scholar