Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442.
Article
Google Scholar
Bax C, Taverna G, Eusebio L, Sironi S, Grizzi F, Guazzoni G, et al. Innovative diagnostic methods for early prostate cancer detection through urine analysis: a review. Cancers. 2018. https://doi.org/10.3390/cancers10040123.
Article
PubMed
PubMed Central
Google Scholar
Martin LR, Williams SL, Haskard KB, DiMatteo MR. The challenge of patient adherence. Ther Clin Risk Manag. 2005;1(3):189–99.
PubMed
PubMed Central
Google Scholar
Sabaawy HE. Genetic heterogeneity and clonal evolution of tumor cells and their impact on precision cancer medicine. J Leuk (Los Angel). 2013;1(4):1000124. https://doi.org/10.4172/2329-6917.1000124.
Article
Google Scholar
Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:1. https://doi.org/10.1056/nejmoa1113205.
Article
Google Scholar
Varadhachary GR, Raber MN. Cancer of unknown primary site. N Engl J Med. 2014;371(8):757–65. https://doi.org/10.1056/NEJMra1303917.
Article
CAS
PubMed
Google Scholar
Kato S, Krishnamurthy N, Banks KC, De P, Williams K, Williams C, et al. Utility of genomic analysis in circulating tumor DNA from patients with carcinoma of unknown primary. Cancer Res. 2017;77(16):4238–46. https://doi.org/10.1158/0008-5472.CAN-17-0628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loeb S, Vellekoop A, Ahmed HU, Catto J, Emberton M, Nam R, et al. Systematic review of complications of prostate biopsy. Eur Urol. 2013;64(6):876–92. https://doi.org/10.1016/j.eururo.2013.05.049.
Article
PubMed
Google Scholar
Ilie M, Hofman P. Pros: can tissue biopsy be replaced by liquid biopsy? Transl Lung Cancer Res. 2016;5(4):420–3. https://doi.org/10.21037/tlcr.2016.08.06.
Article
PubMed
PubMed Central
Google Scholar
Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet. 2014;46(3):225–33. https://doi.org/10.1038/ng.2891.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoffman RM, Gilliland FD, Adams-Cameron M, Hunt WC, Key CR. Prostate-specific antigen testing accuracy in community practice. BMC Fam Pract. 2002;3:19.
Article
Google Scholar
Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9. https://doi.org/10.1126/science.1256930.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedman R. Drug resistance in cancer: molecular evolution and compensatory proliferation. Oncotarget. 2016;7(11):11746–55. https://doi.org/10.18632/oncotarget.7459.
Article
PubMed
PubMed Central
Google Scholar
Diaz LA Jr, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40. https://doi.org/10.1038/nature11219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan KH, Cunningham D, Werner B, Vlachogiannis G, Spiteri I, Heide T, et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov. 2018. https://doi.org/10.1158/2159-8290.cd-17-0891.
Article
PubMed
PubMed Central
Google Scholar
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.
CAS
Google Scholar
Wan JC, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38. https://doi.org/10.1038/nrc.2017.7.
Article
CAS
PubMed
Google Scholar
Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA. 2016;113(13):E1826–34. https://doi.org/10.1073/pnas.1519286113.
Article
CAS
PubMed
Google Scholar
Wyatt AW, Annala M, Aggarwal R, Beja K, Feng F, Youngren J, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J Natl Cancer Inst. 2017. https://doi.org/10.1093/jnci/djx118.
Article
PubMed
Google Scholar
Ossandon MR, Agrawal L, Bernhard EJ, Conley BA, Dey SM, Divi RL, et al. Circulating tumor DNA assays in clinical cancer research. J Natl Cancer Inst. 2018;110(9):929–34. https://doi.org/10.1093/jnci/djy105.
Article
PubMed
PubMed Central
Google Scholar
Park G, Park JK, Son DS, Shin SH, Kim YJ, Jeon HJ, et al. Utility of targeted deep sequencing for detecting circulating tumor DNA in pancreatic cancer patients. Sci Rep. 2018;8(1):11631. https://doi.org/10.1038/s41598-018-30100-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishima Y, Paiva B, Shi J, Park J, Manier S, Takagi S, et al. The mutational landscape of circulating tumor cells in multiple myeloma. Cell Rep. 2017;19(1):218–24. https://doi.org/10.1016/j.celrep.2017.03.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiavon G, Hrebien S, Garcia-Murillas I, Cutts RJ, Pearson A, Tarazona N, et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med. 2015;7(313):313ra182. https://doi.org/10.1126/scitranslmed.aac7551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merker JD, Oxnard GR, Compton C, Diehn M, Hurley P, Lazar AJ, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol. 2017. https://doi.org/10.1200/jco.2017.76.8671.
Article
Google Scholar
Pantel K. Blood-based analysis of circulating cell-free DNA and tumor cells for early cancer detection. PLoS Med. 2016;13(12):e1002205. https://doi.org/10.1371/journal.pmed.1002205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rachiglio AM, Esposito Abate R, Sacco A, Pasquale R, Fenizia F, Lambiase M, et al. Limits and potential of targeted sequencing analysis of liquid biopsy in patients with lung and colon carcinoma. Oncotarget. 2016;7(41):66595–605. https://doi.org/10.18632/oncotarget.10704.
Article
PubMed
PubMed Central
Google Scholar
Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164(1–2):57–68. https://doi.org/10.1016/j.cell.2015.11.050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173(2):291–304. https://doi.org/10.1016/j.cell.2018.03.022.
Article
CAS
PubMed
Google Scholar
Leygo C, Williams M, Jin HC, Chan MWY, Chu WK, Grusch M, et al. DNA methylation as a noninvasive epigenetic biomarker for the detection of cancer. Dis Markers. 2017;2017:3726595. https://doi.org/10.1155/2017/3726595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Toung JM, Jassowicz AF, Vijayaraghavan R, Kang H, Zhang R, et al. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Ann Oncol. 2018;29(6):1445–53. https://doi.org/10.1093/annonc/mdy119.
Article
CAS
PubMed
Google Scholar
Gordevicius J, Krisciunas A, Groot DE, Yip SM, Susic M, Kwan A, et al. Cell-free DNA modification dynamics in abiraterone acetate-treated prostate cancer patients. Clin Cancer Res. 2018;24(14):3317–24. https://doi.org/10.1158/1078-0432.ccr-18-0101.
Article
CAS
PubMed
Google Scholar
Koch A, Joosten SC, Feng Z, de Ruijter TC, Draht MX, Melotte V, et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol. 2018. https://doi.org/10.1038/s41571-018-0004-4.
Article
PubMed
Google Scholar
Peltomaki P. Mutations and epimutations in the origin of cancer. Exp Cell Res. 2012;318(4):299–310. https://doi.org/10.1016/j.yexcr.2011.12.001.
Article
CAS
PubMed
Google Scholar
Statham AL, Taberlay PC, Kelly TK, Jones PA, Clark SJ. Genome-wide nucleosome occupancy and DNA methylation profiling of four human cell lines. Genom Data. 2015;3:94–6. https://doi.org/10.1016/j.gdata.2014.11.012.
Article
PubMed
Google Scholar
Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155–61. https://doi.org/10.1038/nmat4997.
Article
CAS
PubMed
Google Scholar
Wen Y, Wei Y, Zhang S, Li S, Liu H, Wang F, et al. Cell subpopulation deconvolution reveals breast cancer heterogeneity based on DNA methylation signature. Brief Bioinform. 2017;18(3):426–40. https://doi.org/10.1093/bib/bbw028.
Article
CAS
PubMed
Google Scholar
Fiala C, Diamandis EP. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med. 2018;16(1):166. https://doi.org/10.1186/s12916-018-1157-9.
Article
PubMed
PubMed Central
Google Scholar
Zeng H, He B, Yi C, Peng J. Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J Genet Genom. 2018. https://doi.org/10.1016/j.jgg.2018.02.007.
Article
Google Scholar
Feng H, Jin P, Wu H. Disease prediction by cell-free DNA methylation. Brief Bioinform. 2018;1:1. https://doi.org/10.1093/bib/bby029.
Article
Google Scholar
Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K, Zhang K. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet. 2017;49(4):635–42. https://doi.org/10.1038/ng.3805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang S, Li Q, Chen Q, Zhou Y, Park S, Lee G, et al. CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol. 2017;18(1):53. https://doi.org/10.1186/s13059-017-1191-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS ONE. 2014;9(10):e109478. https://doi.org/10.1371/journal.pone.0109478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wedge E, Hansen JW, Garde C, Asmar F, Tholstrup D, Kristensen SS, et al. Global hypomethylation is an independent prognostic factor in diffuse large B cell lymphoma. Am J Hematol. 2017;92(7):689–94. https://doi.org/10.1002/ajh.24751.
Article
CAS
PubMed
Google Scholar
Song CX, Yin S, Ma L, Wheeler A, Chen Y, Zhang Y, et al. 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res. 2017. https://doi.org/10.1038/cr.2017.106.
Article
PubMed
PubMed Central
Google Scholar
Li W, Zhang X, Lu X, You L, Song Y, Luo Z, et al. 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 2017. https://doi.org/10.1038/cr.2017.121.
Article
PubMed
PubMed Central
Google Scholar
Tian X, Sun B, Chen C, Gao C, Zhang J, Lu X, et al. Circulating tumor DNA 5-hydroxymethylcytosine as a novel diagnostic biomarker for esophageal cancer. Cell Res. 2018. https://doi.org/10.1038/s41422-018-0014-x.
Article
PubMed
PubMed Central
Google Scholar
Ivanov M, Baranova A, Butler T, Spellman P, Mileyko V. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation. BMC Genom. 2015;16(Suppl 13):S1. https://doi.org/10.1186/1471-2164-16-S13-S1.
Article
Google Scholar
Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci. 2016;113(13):E1826–34. https://doi.org/10.1073/pnas.1519286113.
Article
CAS
PubMed
Google Scholar
Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3(4):253–66. https://doi.org/10.1038/nrc1045.
Article
CAS
PubMed
Google Scholar
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333(6047):1300–3. https://doi.org/10.1126/science.1210597.
Article
CAS
PubMed
PubMed Central
Google Scholar
Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2011;13(1):7–13. https://doi.org/10.1038/nrg3080.
Article
CAS
PubMed
Google Scholar
Skvortsova K, Zotenko E, Luu P-L, Gould CM, Nair SS, Clark SJ, et al. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenet Chromat. 2017;10(1):16. https://doi.org/10.1186/s13072-017-0123-7.
Article
CAS
Google Scholar
Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29(1):68–72. https://doi.org/10.1038/nbt.1732.
Article
CAS
PubMed
Google Scholar
Doerks T, Copley RR, Schultz J, Ponting CP, Bork P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 2002;12(1):47–56.
Article
CAS
Google Scholar
Song CX, Yi C, He C. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat Biotechnol. 2012;30(11):1107–16. https://doi.org/10.1038/nbt.2398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149(6):1368–80. https://doi.org/10.1016/j.cell.2012.04.027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, et al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Genome Res. 2012;22(3):467–77. https://doi.org/10.1101/gr.126417.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson JP, Meehan RR. The application of genome-wide 5-hydroxymethylcytosine studies in cancer research. Epigenomics. 2017;9(1):77–91. https://doi.org/10.2217/epi-2016-0122.
Article
CAS
PubMed
Google Scholar
Han D, Lu X, Shih AH, Nie J, You Q, Xu MM, et al. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Mol Cell. 2016;63(4):711–9. https://doi.org/10.1016/j.molcel.2016.06.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen K, Zhang J, Guo Z, Ma Q, Xu Z, Zhou Y, et al. Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res. 2016;26(1):103–18. https://doi.org/10.1038/cr.2015.150.
Article
CAS
PubMed
Google Scholar
Vasanthakumar A, Godley LA. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet. 2015;208(5):167–77. https://doi.org/10.1016/j.cancergen.2015.02.009.
Article
CAS
PubMed
Google Scholar
Li X, Liu Y, Salz T, Hansen KD, Feinberg A. Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver. Genome Res. 2016;26(12):1730–41. https://doi.org/10.1101/gr.211854.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer. 2016;23(3):R157–71. https://doi.org/10.1530/ERC-15-0369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Widschwendter M, Zikan M, Wahl B, Lempiainen H, Paprotka T, Evans I, et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. Genome Med. 2017;9(1):116. https://doi.org/10.1186/s13073-017-0500-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Politaki E, Voutsina A, et al. ESR1 methylation: a liquid biopsy-based epigenetic assay for the follow-up of patients with metastatic breast cancer receiving endocrine treatment. Clin Cancer Res. 2018;24(6):1500–10. https://doi.org/10.1158/1078-0432.ccr-17-1181.
Article
CAS
PubMed
Google Scholar
Hulbert A, Jusue-Torres I. Lung cancer recurrence epigenetic liquid biopsy. J Thorac Dis. 2018;10(1):4–6. https://doi.org/10.21037/jtd.2017.11.124.
Article
PubMed
PubMed Central
Google Scholar
Chan KC, Jiang P, Chan CW, Sun K, Wong J, Hui EP, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci USA. 2013;110(47):18761–8. https://doi.org/10.1073/pnas.1313995110.
Article
CAS
PubMed
Google Scholar
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE. 2010;5(1):e8888. https://doi.org/10.1371/journal.pone.0008888.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010;38(11):e125. https://doi.org/10.1093/nar/gkq223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu M, Hon GC, Szulwach KE, Song CX, Jin P, Ren B, et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc. 2012;7(12):2159–70. https://doi.org/10.1038/nprot.2012.137.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booth MJ, Ost TW, Beraldi D, Bell NM, Branco MR, Reik W, et al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc. 2013;8(10):1841–51. https://doi.org/10.1038/nprot.2013.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plongthongkum N, Diep DH, Zhang K. Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet. 2014;15(10):647–61. https://doi.org/10.1038/nrg3772.
Article
CAS
PubMed
Google Scholar
Petterson A, Chung TH, Tan D, Sun X, Jia XY. RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution. Genome Biol. 2014;15(9):456. https://doi.org/10.1186/s13059-014-0456-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336(6083):934–7. https://doi.org/10.1126/science.1220671.
Article
CAS
PubMed
Google Scholar
Cui L, Chung TH, Tan D, Sun X, Jia XY. JBP1-seq: a fast and efficient method for genome-wide profiling of 5hmC. Genomics. 2014;104(5):368–75. https://doi.org/10.1016/j.ygeno.2014.08.023.
Article
CAS
PubMed
Google Scholar
Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012;13(10):705–19. https://doi.org/10.1038/nrg3273.
Article
CAS
PubMed
Google Scholar
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91. https://doi.org/10.1136/gutjnl-2015-310912.
Article
PubMed
Google Scholar
Mojtabanezhad Shariatpanahi A, Yassi M, Nouraie M, Sahebkar A, Varshoee Tabrizi F, Kerachian MA. The importance of stool DNA methylation in colorectal cancer diagnosis: a meta-analysis. PLoS ONE. 2018;13(7):e0200735. https://doi.org/10.1371/journal.pone.0200735.
Article
CAS
PubMed
PubMed Central
Google Scholar
Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63(2):317–25. https://doi.org/10.1136/gutjnl-2012-304149.
Article
CAS
PubMed
Google Scholar
Battaglin F, Naseem M, Puccini A, Lenz HJ. Molecular biomarkers in gastro-esophageal cancer: recent developments, current trends and future directions. Cancer Cell Int. 2018;18:99. https://doi.org/10.1186/s12935-018-0594-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pectasides E, Stachler MD, Derks S, Liu Y, Maron S, Islam M, et al. Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma. Cancer Discov. 2018;8(1):37–48. https://doi.org/10.1158/2159-8290.Cd-17-0395.
Article
CAS
PubMed
Google Scholar
Gao J, Wang H, Zang W, Li B, Rao G, Li L, et al. Circulating tumor DNA functions as an alternative for tissue to overcome tumor heterogeneity in advanced gastric cancer. Cancer Sci. 2017;108(9):1881–7. https://doi.org/10.1111/cas.13314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Li B, Liu Z, Gong J, Shao L, Ren J, et al. HER2 copy number of circulating tumour DNA functions as a biomarker to predict and monitor trastuzumab efficacy in advanced gastric cancer. Eur J Cancer. 2018;88:92–100. https://doi.org/10.1016/j.ejca.2017.10.032.
Article
CAS
PubMed
Google Scholar
Bennett CW, Berchem G, Kim YJ, El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget. 2016;7(43):71013–35. https://doi.org/10.18632/oncotarget.11717.
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Han X, Gao C, Xing Y, Qi Z, Liu R, et al. 5-Hydroxymethylome in circulating cell-free DNA as A potential biomarker for non-small-cell lung cancer. Genom Proteom Bioinf. 2018. https://doi.org/10.1016/j.gpb.2018.06.002.
Article
Google Scholar
Chiu BYQZZ, Stepniak L, Zhang X, Chernoff M, Zimmerman TL, He C, Zhang W, editors. 5-Hydroxymethylcytosine of circulating cell-free DNA in plasma: a novel non-invasive marker for progression and prognosis in multiple myeloma. ASH: Atlanta; 2017.
Google Scholar
Tang W, Wan S, Yang Z, Teschendorff AE, Zou Q. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics. 2018;34(3):398–406. https://doi.org/10.1093/bioinformatics/btx622.
Article
CAS
PubMed
Google Scholar
Yada E, Wada S, Yoshida S, Sasada T. Use of patient-derived xenograft mouse models in cancer research and treatment. Future sci OA. 2017;4(3):FSO271. https://doi.org/10.4155/fsoa-2017-0136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karemaker ID, Vermeulen M. Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 2018. https://doi.org/10.1016/j.tibtech.2018.04.002.
Article
PubMed
Google Scholar
Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018. https://doi.org/10.1038/s41586-018-0703-0.
Article
PubMed
PubMed Central
Google Scholar
Hahn MA, Li AX, Wu X, Pfeifer GP. Single base resolution analysis of 5-methylcytosine and 5-hydroxymethylcytosine by RRBS and TAB-RRBS. Methods Mol Biol. 2015;1238:273–87. https://doi.org/10.1007/978-1-4939-1804-1_14.
Article
PubMed
PubMed Central
Google Scholar