Chahar MK, Sharma N, Dobhal MP, et al. Flavonoids: a versatile source of anticancer drugs [J]. Pharmacogn Rev. 2011;5(9):1–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katyal P, Bhardwaj N, Khajuria R. Flavonoids and their therapeutic potential as anticancer agents; biosynthesis, metabolism and regulation [J]. World J Pharm Pharm Sci. 2014;3(6):2188–216.
CAS
Google Scholar
Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an emerging anti-melanoma agent: a four-focus area therapeutic development strategy. Front Nutr. 2016;3:48.
Article
PubMed
PubMed Central
Google Scholar
Si HY, Li DP, Wang TM, et al. Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system [J]. J Nanosci Nanotechnol. 2010;10(4):2325–31.
Article
CAS
PubMed
Google Scholar
Nema R, Jain P, Khare S, Pradhan A. Flavonoid and cancer prevention—mini review. Res Pharm. 2015;2(2):46–50.
Google Scholar
Hodek P, Trefil P, Stiborova M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes p450 [J]. Chem Biol Interact. 2002;139(1):1–21.
Article
CAS
PubMed
Google Scholar
Hertog MGL, Hollman PCH, van de Putte B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices [J]. J Agric Food Chem. 1993;41(8):1242–6.
Article
CAS
Google Scholar
Gontijo VS, Dos Santos MH, Viegas C Jr. Biological and chemical aspects of natural biflavonoids from plants: a brief review. Mini Rev Med Chem. 2016. doi:10.2174/1389557517666161104130026.
Google Scholar
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview [J]. Sci World J. 2013;2013:162750.
Google Scholar
Neuhouser ML. Dietary flavonoids and cancer risk: evidence from human population studies [J]. Nutr Cancer. 2004;50(1):1–7.
Article
CAS
PubMed
Google Scholar
Ohga N, Hida K, Hida Y, et al. Inhibitory effects of epigallocatechin-3 gallate, a polyphenol in green tea, on tumor-associated endothelial cells and endothelial progenitor cells [J]. Cancer Sci. 2009;100(10):1963–70.
Article
CAS
PubMed
Google Scholar
Bermudez-Soto MJ, Larrosa M, Garcia-Cantalejo J, et al. Transcriptional changes in human caco-2 colon cancer cells following exposure to a recurrent non-toxic dose of polyphenol-rich chokeberry juice [J]. Genes Nutr. 2007;2(1):111–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vue B, Zhang S, Chen QH. Flavonoids with therapeutic potential in prostate cancer [J]. Anticancer Agents Med Chem. 2016;16(10):1205–29.
Article
CAS
PubMed
Google Scholar
Wenzel U, Kuntz S, Brendel MD, et al. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells [J]. Cancer Res. 2000;60(14):3823–31.
CAS
PubMed
Google Scholar
Dal-Ho H, Hirofumi T, Yamada K. Inhibition of environmental estrogen-induced proliferation of human breast carcinoma mcf-7 cells by flavonoids [J]. Vitro Cell Dev Biol Anim. 2001;37(5):275–82.
Google Scholar
Yin F, Giuliano AE, Van Herle AJ. Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (aro) [J]. Anticancer Res. 1999;19(5b):4297–303.
CAS
PubMed
Google Scholar
Woo H-H, Jeong BR, Hawes MC. Flavonoids: from cell cycle regulation to biotechnology [J]. Biotech Lett. 2005;27(6):365.
Article
CAS
Google Scholar
Cho HJ, Suh DS, Moon SH, et al. Silibinin inhibits tumor growth through downregulation of extracellular signal-regulated kinase and akt in vitro and in vivo in human ovarian cancer cells [J]. J Agric Food Chem. 2013;61(17):4089–96.
Article
CAS
PubMed
Google Scholar
Petrick JL, Steck SE, Bradshaw PT, et al. Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the united states of america (USA) [J]. Br J Cancer. 2015;112(7):1291–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cibin TR, Devi DG, Abraham A. Chemoprevention of skin cancer by the flavonoid fraction of saraca asoka [J]. Phytother Res. 2010;24(5):666–72.
CAS
PubMed
Google Scholar
Rossi M, Rosato V, Bosetti C, et al. Flavonoids, proanthocyanidins, and the risk of stomach cancer [J]. Cancer Causes Control. 2010;21(10):1597–604.
Article
PubMed
Google Scholar
Surh YJ. Cancer chemoprevention with dietary phytochemicals [J]. Nat Rev Cancer. 2003;3(10):768–80.
Article
CAS
PubMed
Google Scholar
Tsyrlov IB, Mikhailenko VM, Gelboin HV. Isozyme- and species-specific susceptibility of cdna-expressed cyp1a p-450s to different flavonoids [J]. Biochim Biophys Acta. 1994;1205(2):325–35.
Article
CAS
PubMed
Google Scholar
Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation [J]. Curr Med Chem. 2001;8(2):135–53.
Article
CAS
PubMed
Google Scholar
Iwashita K, Kobori M, Yamaki K, et al. Flavonoids inhibit cell growth and induce apoptosis in b16 melanoma 4a5 cells [J]. Biosci Biotechnol Biochem. 2000;64(9):1813–20.
Article
CAS
PubMed
Google Scholar
Lee WR, Shen SC, Lin HY, et al. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and ca(2+)-dependent endonuclease [J]. Biochem Pharmacol. 2002;63(2):225–36.
Article
CAS
PubMed
Google Scholar
Konig A, Schwartz GK, Mohammad RM, et al. The novel cyclin-dependent kinase inhibitor flavopiridol downregulates bcl-2 and induces growth arrest and apoptosis in chronic b-cell leukemia lines [J]. Blood. 1997;90(11):4307–12.
CAS
PubMed
Google Scholar
Wang HK. The therapeutic potential of flavonoids [J]. Expert Opin Investig Drugs. 2000;9(9):2103–19.
Article
CAS
PubMed
Google Scholar
Le Marchand L, Murphy SP, Hankin JH, et al. Intake of flavonoids and lung cancer [J]. J Natl Cancer Inst. 2000;92(2):154–60.
Article
PubMed
Google Scholar
Sun XY, Plouzek CA, Henry JP, et al. Increased udp-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin a in prostate cancer cells [J]. Cancer Res. 1998;58(11):2379–84.
CAS
PubMed
Google Scholar
Bu-Abbas A, Clifford MN, Walker R, et al. Contribution of caffeine and flavanols in the induction of hepatic phase ii activities by green tea [J]. Food Chem Toxicol. 1998;36(8):617–21.
Article
CAS
PubMed
Google Scholar
Fotsis T, Pepper MS, Aktas E, et al. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis [J]. Cancer Res. 1997;57(14):2916–21.
CAS
PubMed
Google Scholar
Kim MH. Flavonoids inhibit vegf/bfgf-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases [J]. J Cell Biochem. 2003;89(3):529–38.
Article
CAS
PubMed
Google Scholar
Schindler R, Mentlein R. Flavonoids and vitamin e reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells [J]. J Nutr. 2006;136(6):1477–82.
CAS
PubMed
Google Scholar
Kioka N, Hosokawa N, Komano T, et al. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (mdr1) expression caused by arsenite [J]. FEBS Lett. 1992;301(3):307–9.
Article
CAS
PubMed
Google Scholar
Shapiro AB, Ling V. Effect of quercetin on hoechst 33342 transport by purified and reconstituted p-glycoprotein [J]. Biochem Pharmacol. 1997;53(4):587–96.
Article
CAS
PubMed
Google Scholar
Lee JY, Kim HS, Song YS. Genistein as a potential anticancer agent against ovarian cancer [J]. J Tradit Complement Med. 2012;2(2):96–104.
Article
PubMed
PubMed Central
Google Scholar
Adjakly M, Ngollo M, Boiteux JP, et al. Genistein and daidzein: different molecular effects on prostate cancer [J]. Anticancer Res. 2013;33(1):39–44.
CAS
PubMed
Google Scholar
Hwang KA, Choi KC. Anticarcinogenic effects of dietary phytoestrogens and their chemopreventive mechanisms [J]. Nutr Cancer. 2015;67(5):796–803.
Article
CAS
PubMed
Google Scholar
Martin PM, Horwitz KB, Ryan DS, et al. Phytoestrogen interaction with estrogen receptors in human breast cancer cells [J]. Endocrinology. 1978;103(5):1860–7.
Article
CAS
PubMed
Google Scholar
Peterson G, Barnes S. Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells [J]. Cell Growth Differ. 1996;7(10):1345–51.
CAS
PubMed
Google Scholar
Biedermann D, Vavrikova E, Cvak L, et al. Chemistry of silybin [J]. Nat Prod Rep. 2014;31(9):1138–57.
Article
CAS
PubMed
Google Scholar
Zarrelli A, Romanucci V, De Napoli L, et al. Synthesis of new silybin derivatives and evaluation of their antioxidant properties [J]. Helv Chim Acta. 2015;98(3):399–409.
Article
CAS
Google Scholar
Comelli MC, Mengs U, Schneider C, et al. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy [J]. Integr Cancer Ther. 2007;6(2):120–9.
Article
CAS
PubMed
Google Scholar
Deep G, Agarwal R. Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer [J]. Cancer Metastasis Rev. 2010;29(3):447–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoh C, Boocock D, Marczylo T, et al. Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences [J]. Clin Cancer Res. 2006;12(9):2944–50.
Article
CAS
PubMed
Google Scholar
Flaig TW, Glode M, Gustafson D, et al. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer [J]. Prostate. 2010;70(8):848–55.
CAS
PubMed
Google Scholar
Manna SK, Mukhopadhyay A, Van NT, et al. Silymarin suppresses tnf-induced activation of nf-kappa b, c-jun n-terminal kinase, and apoptosis [J]. J Immunol. 1999;163(12):6800–9.
CAS
PubMed
Google Scholar
Ahmad N, Gali H, Javed S, et al. Skin cancer chemopreventive effects of a flavonoid antioxidant silymarin are mediated via impairment of receptor tyrosine kinase signaling and perturbation in cell cycle progression [J]. Biochem Biophys Res Commun. 1998;247(2):294–301.
Article
CAS
PubMed
Google Scholar
Zhu W, Zhang JS, Young CY. Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line lncap [J]. Carcinogenesis. 2001;22(9):1399–403.
Article
CAS
PubMed
Google Scholar
Li L, Zeng J, Gao Y, et al. Targeting silibinin in the antiproliferative pathway [J]. Expert Opin Investig Drugs. 2010;19(2):243–55.
Article
CAS
PubMed
Google Scholar
Surai PF. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives [J]. Antioxidants (Basel, Switzerland). 2015;4(1):204–47.
CAS
Google Scholar
Bang CI, Paik SY, Sun DI, et al. Cell growth inhibition and down-regulation of survivin by silibinin in a laryngeal squamous cell carcinoma cell line [J]. Ann Otol Rhinol Laryngol. 2008;117(10):781–5.
Article
PubMed
Google Scholar
Wu K, Zeng J, Li L, et al. Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors [J]. Oncol Rep. 2010;23(6):1545–52.
Article
CAS
PubMed
Google Scholar
Harwood M, Danielewska-Nikiel B, Borzelleca JF, et al. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties [J]. Food Chem Toxicol. 2007;45(11):2179–205.
Article
CAS
PubMed
Google Scholar
Zhao Y, Fan D, Zheng ZP, et al. 8-c-(e-phenylethenyl)quercetin from onion/beef soup induces autophagic cell death in colon cancer cells through erk activation. Mol Nutr Food Res. 2016;61(2).
Wang SF, Wu MY, Cai CZ, Li M, Lu JH. Autophagy modulators from traditional chinese medicine: mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol. 2016;194:861–76.
Article
CAS
PubMed
Google Scholar
Lou M, Zhang LN, Ji PG, et al. Quercetin nanoparticles induced autophagy and apoptosis through akt/erk/caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo [J]. Biomed Pharmacother. 2016;84:1–9.
Article
CAS
PubMed
Google Scholar
Egert S, Rimbach G. Which sources of flavonoids: complex diets or dietary supplements? [J]. Adv Nutr: Int Rev J. 2011;2(1):8–14.
Article
CAS
Google Scholar
Gažák R, Fuksová K, Marhol P, et al. Preparative method for isosilybin isolation based on enzymatic kinetic resolution of silymarin mixture [J]. Process Biochem. 2013;48(1):184–9.
Article
CAS
Google Scholar
Zhou J, Du G, Chen J. Novel fermentation processes for manufacturing plant natural products [J]. Curr Opin Biotechnol. 2014;25:17–23.
Article
CAS
PubMed
Google Scholar
Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety [J]. Annu Rev Nutr. 2002;22(1):19–34.
Article
CAS
PubMed
Google Scholar
Zhu Y, Liu Y, Zhan Y, et al. Preparative isolation and purification of five flavonoid glycosides and one benzophenone galloyl glycoside from psidium guajava by high-speed counter-current chromatography (hsccc) [J]. Molecules (Basel, Switzerland). 2013;18(12):15648–61.
Article
CAS
Google Scholar
Markham KR. Isolation techniques for flavonoids [M]. In: Harborne JB, Mabry TJ, Mabry H, editors. The flavonoids. Boston: Springer; 1975. p. 1–44.
Google Scholar
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads [J]. Biochim Biophys Acta. 2013;1830(6):3670–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hossain MA, Mizanur Rahman SM. Isolation and characterisation of flavonoids from the leaves of medicinal plant orthosiphon stamineus [J]. Arab J Chem. 2015;8(2):218–21.
Article
CAS
Google Scholar
Ferreyra MLF, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications [J]. Front Plant Sci. 2012;3:222.
Google Scholar
Koes RE, Quattrocchio F, Mol JN. The flavonoid biosynthetic pathway in plants: function and evolution [J]. BioEssays. 1994;16(2):123–32.
Article
CAS
Google Scholar
Quattrocchio F, Baudry A, Lepiniec L, et al. The regulation of flavonoid biosynthesis [M]. The science of flavonoids. Berlin: Springer; 2006. p. 97–122.
Google Scholar
Stobiecki M, Kachlicki P. Isolation and identification of flavonoids [M]. The science of flavonoids. Berlin: Springer; 2006. p. 47–69.
Google Scholar
Gates MA, Vitonis AF, Tworoger SS, et al. Flavonoid intake and ovarian cancer risk in a population-based case-control study [J]. Int J Cancer. 2009;124(8):1918–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gates MA, Tworoger SS, Hecht JL, et al. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer [J]. Int J Cancer. 2007;121(10):2225–32.
Article
CAS
PubMed
Google Scholar
Molina-Montes E, Sanchez MJ, Zamora-Ros R, et al. Flavonoid and lignan intake and pancreatic cancer risk in the european prospective investigation into cancer and nutrition cohort [J]. Int J Cancer. 2016;139(7):1480–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lei L, Yang Y, He H, Chen E, Du L, Dong J, Yang J. Flavan-3-ols consumption and cancer risk: a meta-analysis of epidemiologic studies. Oncotarget. 2016;7(45):73573–92.
PubMed
PubMed Central
Google Scholar
Theodoratou E, Kyle J, Cetnarskyj R, et al. Dietary flavonoids and the risk of colorectal cancer [J]. Cancer Epidemiol Biomark Prev. 2007;16(4):684–93.
Article
CAS
Google Scholar
Zamora-Ros R, Barupal DK, Rothwell JA, Jenab M, Fedirko V, Romieu I, Aleksandrova K, Overvad K, Kyro C, Tjonneland A, Affret A, His M, Boutron-Ruault MC, Katzke V, Kuhn T, Boeing H, Trichopoulou A, Naska A, Kritikou M, Saieva C, Agnoli C, Santucci de Magistris M, Tumino R, Fasanelli F, Weiderpass E, Skeie G, Merino S, Jakszyn P, Sanchez MJ, Dorronsoro M, Navarro C, Ardanaz E, Sonestedt E, Ericson U, Maria Nilsson L, Boden S, Bueno-de-Mesquita HB, Peeters PH, Perez-Cornago A, Wareham NJ, Khaw KT, Freisling H, Cross AJ, Riboli E, Scalbert A. Dietary flavonoid intake and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. Int J Cancer. 2017;140(8):1836–44.
Article
CAS
PubMed
Google Scholar
Shin A, Lee J, Lee J, et al. Isoflavone and soyfood intake and colorectal cancer risk: a case-control study in korea [J]. PLoS ONE. 2015;10(11):e0143228.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zamora-Ros R, Not C, Guinó E, et al. Association between habitual dietary flavonoid and lignan intake and colorectal cancer in a spanish case–control study (the bellvitge colorectal cancer study) [J]. Cancer Causes Control. 2013;24(3):549–57.
Article
PubMed
Google Scholar
Woo HD, Kim J. Dietary flavonoid intake and risk of stomach and colorectal cancer [J]. World J Gastroenterol. 2013;19(7):1011–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simons CC, Hughes LA, Arts IC, et al. Dietary flavonol, flavone and catechin intake and risk of colorectal cancer in the netherlands cohort study [J]. Int J Cancer. 2009;125(12):2945–52.
Article
CAS
PubMed
Google Scholar
Hirvonen T, Virtamo J, Korhonen P, et al. Flavonol and flavone intake and the risk of cancer in male smokers (finland) [J]. Cancer Causes Control. 2001;12(9):797–802.
Article
Google Scholar
Nimptsch K, Zhang X, Cassidy A, et al. Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts [J]. Am J Clin Nutr. 2016;103(1):184–91.
Article
CAS
PubMed
Google Scholar
Kempkes M, Golka K, Reich S, et al. Glutathione s-transferase gstm1 and gstt1 null genotypes as potential risk factors for urothelial cancer of the bladder [J]. Arch Toxicol. 1996;71:123–6.
Article
CAS
PubMed
Google Scholar
Yu CP, Shia C-S, Tsai S-Y, Hou YC. Pharmacokinetics and relative bioavailability of flavonoids between two dosage forms of gegen-qinlian-tang in rats. Evid-Based Complement Altern Med. 2012;2012:308018.
Google Scholar
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships [J]. J Nutr Biochem. 2002;13(10):572–84.
Article
CAS
PubMed
Google Scholar
Cai X, Fang Z, Dou J, et al. Bioavailability of quercetin: problems and promises [J]. Curr Med Chem. 2013;20(20):2572–82.
Article
CAS
PubMed
Google Scholar
Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals [J]. Eur J Pharm Sci. 2009;36(4):502–10.
Article
CAS
PubMed
Google Scholar
Gil-Izquierdo A, Gil MI, Ferreres F, et al. In vitro availability of flavonoids and other phenolics in orange juice [J]. J Agric Food Chem. 2001;49(2):1035–41.
Article
CAS
PubMed
Google Scholar
Mandalari G, Tomaino A, Rich GT, et al. Polyphenol and nutrient release from skin of almonds during simulated human digestion [J]. Food Chem. 2010;122(4):1083–8.
Article
CAS
Google Scholar
King RA, Bursill DB. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans [J]. Am J Clin Nutr. 1998;67(5):867–72.
CAS
PubMed
Google Scholar
Gee JM, DuPont MS, Day AJ, et al. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway [J]. J Nutr. 2000;130(11):2765–71.
CAS
PubMed
Google Scholar
Spencer JPE. Metabolism of tea flavonoids in the gastrointestinal tract [J]. J Nutr. 2003;133(10):3255S–61S.
CAS
PubMed
Google Scholar
Olthof MR, Hollman PC, Buijsman MN, et al. Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans [J]. J Nutr. 2003;133(6):1806–14.
CAS
PubMed
Google Scholar
Aura AM, Martin-Lopez P, O’Leary KA, et al. In vitro metabolism of anthocyanins by human gut microflora [J]. Eur J Nutr. 2005;44(3):133–42.
Article
CAS
PubMed
Google Scholar
Winter J, Moore LH, Dowell VR Jr, et al. C-ring cleavage of flavonoids by human intestinal bacteria [J]. Appl Environ Microbiol. 1989;55(5):1203–8.
CAS
PubMed
PubMed Central
Google Scholar
Gonthier MP, Verny MA, Besson C, et al. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats [J]. J Nutr. 2003;133(6):1853–9.
CAS
PubMed
Google Scholar
Kim DH, Jung EA, Sohng IS, et al. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities [J]. Arch Pharm Res. 1998;21(1):17–23.
Article
CAS
PubMed
Google Scholar
Ueno I, Nakano N, Hirono I. Metabolic fate of [14c] quercetin in the aci rat [J]. Jpn J Exp Med. 1983;53(1):41–50.
CAS
PubMed
Google Scholar
Boulton DW, Walle UK, Walle T. Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism [J]. J Pharm Pharmacol. 1999;51(3):353–9.
Article
CAS
PubMed
Google Scholar
Zhu H-J, Brinda BJ, Chavin KD, et al. An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: a dose escalation study [J]. Drug Metab Dispos. 2013;41(9):1679–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixit N, Baboota S, Kohli K, et al. Silymarin: a review of pharmacological aspects and bioavailability enhancement approaches [J]. Indian J Pharmacol. 2007;39(4):172.
Article
CAS
Google Scholar
Spencer JP, Schroeter H, Rechner AR, et al. Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo [J]. Antioxid Redox Signal. 2001;3(6):1023–39.
Article
CAS
PubMed
Google Scholar
Gawande S, Kale A, Kotwal S. Effect of nutrient mixture and black grapes on the pharmacokinetics of orally administered (-)epigallocatechin-3-gallate from green tea extract: a human study [J]. Phytother Res. 2008;22(6):802–8.
Article
CAS
PubMed
Google Scholar
Nunes T, Almeida L, Rocha JF, et al. Pharmacokinetics of trans-resveratrol following repeated administration in healthy elderly and young subjects [J]. J Clin Pharmacol. 2009;49(12):1477–82.
Article
CAS
PubMed
Google Scholar
Decker EA. Phenolics: prooxidants or antioxidants? [J]. Nutr Rev. 1997;55(11 Pt 1):396–8.
CAS
PubMed
Google Scholar
Fresco P, Borges F, Diniz C, et al. New insights on the anticancer properties of dietary polyphenols [J]. Med Res Rev. 2006;26(6):747–66.
Article
CAS
PubMed
Google Scholar
Křížková J, Burdová K, Stiborová M, et al. The effects of selected flavonoids on cytochromes p450 in rat liver and small intestine [J]. Interdiscip Toxicol. 2009;2(3):201–4.
Article
PubMed
PubMed Central
Google Scholar
Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase ii metabolic pathways [J]. RSC Adv. 2012;2(21):7948–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao J, Ni X, Kai G, et al. A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase [J]. Crit Rev Food Sci Nutr. 2013;53(5):497–506.
Article
CAS
PubMed
Google Scholar
Xiao J, Kai G, Yamamoto K, et al. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect [J]. Crit Rev Food Sci Nutr. 2013;53(8):818–36.
Article
CAS
PubMed
Google Scholar
Xiao JB, Huo JL, Yang F, et al. Noncovalent interaction of dietary polyphenols with bovine hemoglobin in vitro: molecular structure/property–affinity relationship aspects [J]. J Agric Food Chem. 2011;59(15):8484–90.
Article
CAS
PubMed
Google Scholar
Morris ME, Zhang S. Flavonoid–drug interactions: effects of flavonoids on abc transporters [J]. Life Sci. 2006;78(18):2116–30.
Article
CAS
PubMed
Google Scholar
Duda-Chodak A, Tarko T, Satora P, et al. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review [J]. Eur J Nutr. 2015;54(3):325–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao J, Kai G. A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship [J]. Crit Rev Food Sci Nutr. 2012;52(1):85–101.
Article
CAS
PubMed
Google Scholar
Xiao J, Cao H, Wang Y, et al. Glycosylation of dietary flavonoids decreases the affinities for plasma protein [J]. J Agric Food Chemistry. 2009;57(15):6642–8.
Article
CAS
Google Scholar
Sun Y-L, Patel A, Kumar P, et al. Role of abc transporters in cancer chemotherapy [J]. Chinese J Cancer. 2012;31(2):51–7.
Article
CAS
Google Scholar
Alfarouk KO, Stock C-M, Taylor S, et al. Resistance to cancer chemotherapy: failure in drug response from adme to p-gp [J]. Cancer Cell Int. 2015;15(1):71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kathawala RJ, Gupta P, Ashby CR Jr, et al. The modulation of abc transporter-mediated multidrug resistance in cancer: a review of the past decade [J]. Drug Resist Updates. 2015;18:1–17.
Article
Google Scholar
Klein I, Sarkadi B, Varadi A. An inventory of the human abc proteins [J]. Biochem Biophys Acta. 1999;1461(2):237–62.
Article
CAS
PubMed
Google Scholar
Vasiliou V, Vasiliou K, Nebert DW. Human atp-binding cassette (abc) transporter family [J]. Hum Genom. 2009;3(3):281–90.
Article
CAS
Google Scholar
Rice AJ, Park A, Pinkett HW. Diversity in abc transporters: type i, ii and iii importers [J]. Crit Rev Biochem Mol Biol. 2014;49(5):426–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the atp binding cassette (abc) family in multidrug resistance: a review of the past decade [J]. Cancer Lett. 2016;370(1):153–64.
Article
CAS
PubMed
Google Scholar
Klappe K, Hummel I, Hoekstra D, et al. Lipid dependence of abc transporter localization and function [J]. Chem Phys Lipid. 2009;161(2):57–64.
Article
CAS
Google Scholar
Murakami T, Takano M. Intestinal efflux transporters and drug absorption [J]. Expert Opin Drug Metab Toxicol. 2008;4(7):923–39.
Article
CAS
PubMed
Google Scholar
Russel FG. Transporters: Importance in drug absorption, distribution, and removal [M]. Enzyme-and transporter-based drug-drug interactions. Berlin: Springer; 2010. p. 27–49.
Book
Google Scholar
Alvarez AI, Real R, Pérez M, et al. Modulation of the activity of abc transporters (p-glycoprotein, mrp2, bcrp) by flavonoids and drug response [J]. J Pharm Sci. 2010;99(2):598–617.
Article
CAS
PubMed
Google Scholar
Cermak R, Wolffram S. The potential of flavonoids to influence drug metabolism and pharmacokinetics by local gastrointestinal mechanisms [J]. Curr Drug Metab. 2006;7(7):729–44.
Article
CAS
PubMed
Google Scholar
Gatouillat G, Magid AA, Bertin E, et al. Medicarpin and millepurpan, two flavonoids isolated from medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia p388 cells [J]. Phytomedicine. 2015;22(13):1186–94.
Article
CAS
PubMed
Google Scholar
Dash RP, Ellendula B, Agarwal M, et al. Increased intestinal p-glycoprotein expression and activity with progression of diabetes and its modulation by epigallocatechin-3-gallate: Evidence from pharmacokinetic studies [J]. Eur J Pharmacol. 2015;767:67–76.
Article
CAS
PubMed
Google Scholar
Wink M, Ashour ML, El-Readi MZ. Secondary metabolites from plants inhibiting abc transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Front Microbiol. 2012;3:130.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoonbeek HJ, Raaijmakers JM, De Waard MA. Fungal abc transporters and microbial interactions in natural environments [J]. Mol Plant Microbe Interact. 2002;15(11):1165–72.
Article
CAS
PubMed
Google Scholar
Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human mdr1 (p-glycoprotein): recent advances and clinical relevance [J]. Clin Pharmacol Ther. 2004;75(1):13–33.
Article
CAS
PubMed
Google Scholar
Choi J-S, Han H-K. Enhanced oral exposure of diltiazem by the concomitant use of naringin in rats [J]. Int J Pharm. 2005;305(1):122–8.
Article
CAS
PubMed
Google Scholar
Ofer M, Wolffram S, Koggel A, et al. Modulation of drug transport by selected flavonoids: involvement of p-gp and oct? [J]. Eur J Pharm Sci. 2005;25(2):263–71.
Article
CAS
PubMed
Google Scholar
Spahn-Langguth H, Langguth P. Grapefruit juice enhances intestinal absorption of the p-glycoprotein substrate talinolol [J]. Eur J Pharm Sci. 2001;12(4):361–7.
Article
CAS
PubMed
Google Scholar
Brand W, Schutte ME, Williamson G, et al. Flavonoid-mediated inhibition of intestinal abc transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients [J]. Biomed Pharmacother. 2006;60(9):508–19.
Article
CAS
PubMed
Google Scholar
Li Y, Paxton JW. The effects of flavonoids on the abc transporters: consequences for the pharmacokinetics of substrate drugs [J]. Expert Opin Drug Metab Toxicol. 2013;9(3):267–85.
Article
CAS
PubMed
Google Scholar
Schexnayder C, Stratford RE. Genistein and glyceollin effects on abcc2 (mrp2) and abcg2 (bcrp) in caco-2 cells [J]. Int J Environ Res Public Health. 2015;13(1):17.
Article
PubMed Central
CAS
Google Scholar
Bernardo J, Valentao P, Grosso C, et al. Flavonoids in neurodegeneration: Limitations and strategies to cross cns barriers [J]. Curr Med Chem. 2016;23:4151–74.
Article
PubMed
CAS
Google Scholar
Tan ZR, Zhou YX, Liu J, et al. The influence of abcb1 polymorphism c3435t on the pharmacokinetics of silibinin [J]. J Clin Pharm Ther. 2015;40(6):685–8.
Article
CAS
PubMed
Google Scholar
Zanger UM, Schwab M. Cytochrome p450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation [J]. Pharmacol Ther. 2013;138(1):103–41.
Article
CAS
PubMed
Google Scholar
Rendic S. Summary of information on human cyp enzymes: human p450 metabolism data [J]. Drug Metab Rev. 2002;34(1–2):83–448.
Article
CAS
PubMed
Google Scholar
Miniscalco A, Lundahl J, Regårdh C, et al. Inhibition of dihydropyridine metabolism in rat and human liver microsomes by flavonoids found in grapefruit juice [J]. J Pharmacol Exp Ther. 1992;261(3):1195–9.
CAS
PubMed
Google Scholar
Schubert W, Eriksson U, Edgar B, et al. Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17β-estradiol [J]. Eur J Drug Metab Pharmacokinet. 1995;20(3):219–24.
Article
CAS
PubMed
Google Scholar
Bailey DG, Dresser G, Arnold JM. Grapefruit-medication interactions: forbidden fruit or avoidable consequences? [J]. CMAJ. 2013;185(4):309–16.
Article
PubMed
PubMed Central
Google Scholar
Dong J, Zhang Q, Cui Q, et al. Flavonoids and naphthoflavonoids: wider roles in the modulation of cytochrome p450 family 1 enzymes [J]. ChemMedChem. 2016;11(19):2102–18.
Article
CAS
PubMed
Google Scholar
Arora S, Taneja I, Challagundla M, et al. In vivo prediction of cyp-mediated metabolic interaction potential of formononetin and biochanin a using in vitro human and rat cyp450 inhibition data [J]. Toxicol Lett. 2015;239(1):1–8.
Article
CAS
PubMed
Google Scholar
Shimada T, Tanaka K, Takenaka S, et al. Structure–function relationships of inhibition of human cytochromes p450 1a1, 1a2, 1b1, 2c9, and 3a4 by 33 flavonoid derivatives [J]. Chem Res Toxicol. 2010;23(12):1921–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takemura H, Itoh T, Yamamoto K, et al. Selective inhibition of methoxyflavonoids on human cyp1b1 activity [J]. Bioorg Med Chem. 2010;18(17):6310–5.
Article
CAS
PubMed
Google Scholar
Androutsopoulos VP, Papakyriakou A, Vourloumis D, et al. Comparative cyp1a1 and cyp1b1 substrate and inhibitor profile of dietary flavonoids [J]. Bioorg Med Chem. 2011;19(9):2842–9.
Article
CAS
PubMed
Google Scholar
Sridhar J, Ellis J, Dupart P, et al. Development of flavone propargyl ethers as potent and selective inhibitors of cytochrome p450 enzymes 1a1 and 1a2 [J]. Drug Metab Lett. 2012;6(4):275–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong H, Lin W, Wu J, et al. Flavonoids activate pregnane × receptor-mediated cyp3a4 gene expression by inhibiting cyclin-dependent kinases in hepg2 liver carcinoma cells [J]. BMC Biochem. 2010;11(1):1.
Article
CAS
Google Scholar
Satsu H, Hiura Y, Mochizuki K, et al. Activation of pregnane x receptor and induction of mdr1 by dietary phytochemicals [J]. J Agric Food Chem. 2008;56(13):5366–73.
Article
CAS
PubMed
Google Scholar
Li Y, Ross-Viola JS, Shay NF, et al. Human cyp3a4 and murine cyp3a11 are regulated by equol and genistein via the pregnane x receptor in a species-specific manner [J]. J Nutr. 2009;139(5):898–904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mooiman KD, Maas-Bakker RF, Moret EE, et al. Milk thistle’s active components silybin and isosilybin: novel inhibitors of pxr-mediated cyp3a4 induction [J]. Drug Metab Dispos. 2013;41(8):1494–504.
Article
CAS
PubMed
Google Scholar
Korobkova EA. Effect of natural polyphenols on cyp metabolism: implications for diseases [J]. Chem Res Toxicol. 2015;28(7):1359–90.
Article
CAS
PubMed
Google Scholar
Zeng M, Sun R, Basu S, et al. Disposition of flavonoids via recycling: direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides [J]. Mol Nutr Food Res. 2016;60(5):1006–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ [J]. Ther Adv Gastroenterol. 2013;6(4):295–308.
Article
Google Scholar
Lu K, Mahbub R, Fox JG. Xenobiotics: interaction with the intestinal microflora [J]. ILAR J. 2015;56(2):218–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions [J]. Science. 2012;336(6086):1262–7.
Article
CAS
PubMed
Google Scholar
Scheline RR. Drug metabolism by intestinal microorganisms [J]. J Pharm Sci. 1968;57(12):2021–37.
Article
CAS
PubMed
Google Scholar
Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals [J]. Pharmacol Res. 2010;61(3):219–25.
Article
CAS
PubMed
Google Scholar
Selma MV, Espin JC, Tomas-Barberan FA. Interaction between phenolics and gut microbiota: role in human health [J]. J Agric Food Chem. 2009;57(15):6485–501.
Article
CAS
PubMed
Google Scholar
Lin W, Wang W, Yang H, et al. Influence of intestinal microbiota on the catabolism of flavonoids in mice. J Food Sci. 2016;81(12):H3026–34. doi:10.1111/1750-3841.13544.
Article
CAS
PubMed
Google Scholar
Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8(2):78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nurmi T, Mursu J, Heinonen M, et al. Metabolism of berry anthocyanins to phenolic acids in humans [J]. J Agric Food Chem. 2009;57(6):2274–81.
Article
CAS
PubMed
Google Scholar
Atkinson C, Berman S, Humbert O, et al. In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production [J]. J Nutr. 2004;134(3):596–9.
CAS
PubMed
Google Scholar
Lampe JW. Interindividual differences in response to plant-based diets: implications for cancer risk [J]. Am J Clin Nutr. 2009;89(5):1553s–7s.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simons AL, Renouf M, Hendrich S, et al. Human gut microbial degradation of flavonoids: structure-function relationships [J]. J Agric Food Chem. 2005;53(10):4258–63.
Article
CAS
PubMed
Google Scholar
Duda-Chodak A. The inhibitory effect of polyphenols on human gut microbiota [J]. J Physiol Pharmacol. 2012;63(5):497–503.
CAS
PubMed
Google Scholar
Fotschki B, Juskiewicz J, Sojka M, et al. Ellagitannins and flavan-3-ols from raspberry pomace modulate caecal fermentation processes and plasma lipid parameters in rats [J]. Molecules (Basel, Switzerland). 2015;20(12):22848–62.
Article
CAS
Google Scholar
Esposito D, Damsud T, Wilson M, et al. Black currant anthocyanins attenuate weight gain and improve glucose metabolism in diet-induced obese mice with intact, but not disrupted, gut microbiome [J]. J Agric Food Chem. 2015;63(27):6172–80.
Article
CAS
PubMed
Google Scholar
Bridle P, Timberlake CF. Anthocyanins as natural food colours—selected aspects [J]. Food Chem. 1997;58(1):103–9.
Article
CAS
Google Scholar
Pappas EL. Improving stability of color, total phenolics, flavonoids and ascorbic acid in cranberry juice cocktail via alternative processing and storage techniques. New Brunswick: Rutgers University-Graduate School; 2016.
Google Scholar
Ruenroengklin N, Zhong J, Duan X, et al. Effects of various temperatures and ph values on the extraction yield of phenolics from litchi fruit pericarp tissue and the antioxidant activity of the extracted anthocyanins [J]. Int J Mol Sci. 2008;9(7):1333–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghasemzadeh A, Jaafar HZ, Rahmat A, et al. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (zingiber officinale roscoe) [J]. Int J Mol Sci. 2010;11(10):3885–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maini S, Hodgson HL, Krol ES. The uva and aqueous stability of flavonoids is dependent on b-ring substitution [J]. J Agric Food Chem. 2012;60(28):6966–76.
Article
CAS
PubMed
Google Scholar
Perez-Jimenez J, Serrano J, Tabernero M, et al. Bioavailability of phenolic antioxidants associated with dietary fiber: plasma antioxidant capacity after acute and long-term intake in humans [J]. Plant Foods Hum Nutr. 2009;64(2):102–7.
Article
CAS
PubMed
Google Scholar
Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants [J]. J Food Sci. 2011;76(1):R6–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saura-Calixto F. Dietary fiber as a carrier of dietary antioxidants: an essential physiological function [J]. J Agric Food Chem. 2011;59(1):43–9.
Article
CAS
PubMed
Google Scholar
Yang L, Cao YL, Jiang JG, et al. Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of citrus aurantium l. Var. Amara engl [J]. J Sep Sci. 2010;33(9):1349–55.
CAS
PubMed
Google Scholar
Liu Y, Wang H, Cai X. Optimization of the extraction of total flavonoids from scutellaria baicalensis georgi using the response surface methodology [J]. J Food Sci Technol. 2015;52(4):2336–43.
Article
CAS
PubMed
Google Scholar
Wang X, Wu Y, Chen G, et al. Optimisation of ultrasound assisted extraction of phenolic compounds from sparganii rhizoma with response surface methodology [J]. Ultrason Sonochem. 2013;20(3):846–54.
Article
CAS
PubMed
Google Scholar
Arif Khan SER, John ML and Barbara LK. 471914 nanoharvesting of polyphenolic flavonoids from solidago nemoralis hairy root cultures using functionalized mesoporous silica nanoparticles. 2016 AIChE annual meeting 2016. San Francisco: American Institute of Chemical Engineers; 2016.
Kurepa J, Nakabayashi R, Paunesku T, et al. Direct isolation of flavonoids from plants using ultra-small anatase tio(2) nanoparticles [J]. Plant J. 2014;77(3):443–53.
Article
CAS
PubMed
Google Scholar
Wang J, Zhao Y-M, Guo C-Y, et al. Ultrasound-assisted extraction of total flavonoids from Inula helenium [J]. Pharmacogn Mag. 2012;8(30):166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng L-L, Wang D, Li YY, et al. Ultrasound-assisted extraction of total flavonoids from Aconitum gymnandrum [J]. Pharmacogn Mag. 2014;10(Suppl 1):S141.
PubMed
PubMed Central
Google Scholar
Wu J, Du G, Zhou J, et al. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds [J]. J Biotechnol. 2014;188:72–80.
Article
CAS
PubMed
Google Scholar
Santos CN, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose [J]. Metab Eng. 2011;13(4):392–400.
Article
CAS
PubMed
Google Scholar
Wu J, Du G, Zhou J, et al. Metabolic engineering of Escherichia coli for (2s)-pinocembrin production from glucose by a modular metabolic strategy [J]. Metab Eng. 2013;16:48–55.
Article
PubMed
CAS
Google Scholar
Vannelli T, Wei Qi W, Sweigard J, et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi [J]. Metab Eng. 2007;9(2):142–51.
Article
CAS
PubMed
Google Scholar
Koopman F, Beekwilder J, Crimi B, et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae [J]. Microb Cell Fact. 2012;11:155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms [J]. Appl Microbiol Biotechnol. 2011;91(4):949–56.
Article
CAS
PubMed
Google Scholar
Thilakarathna SH, Rupasinghe HPV. Flavonoid bioavailability and attempts for bioavailability enhancement [J]. Nutrients. 2013;5(9):3367–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olthof MR, Hollman PC, Vree TB, et al. Bioavailabilities of quercetin-3-glucoside and quercetin-4′-glucoside do not differ in humans [J]. J Nutr. 2000;130(5):1200–3.
CAS
PubMed
Google Scholar
VTatiraju D, Bagade VB, JKarambelkar P, et al. Natural bioenhancers: an overview [J]. J Pharmacogn Phytochem. 2013;2(3).
Rinwa P, Kumar A. Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress. Arch Pharm Res. 2013. doi:10.1007/s12272-013-0205-4.
PubMed
Google Scholar
Lambert JD, Hong J, Kim DH, et al. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice [J]. J Nutr. 2004;134(8):1948–52.
CAS
PubMed
Google Scholar
Shoba G, Joy D, Joseph T, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers [J]. Planta Med. 1998;64(4):353–6.
Article
CAS
PubMed
Google Scholar
Vaidyanathan JB, Walle T. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line caco-2 [J]. J Pharmacol Exp Ther. 2003;307(2):745–52.
Article
CAS
PubMed
Google Scholar
Gao S, Hu M. Bioavailability challenges associated with development of anti-cancer phenolics [J]. Mini Rev Med Chem. 2010;10(6):550–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vue B, Zhang S, Zhang X, et al. Silibinin derivatives as anti-prostate cancer agents: synthesis and cell-based evaluations [J]. Eur J Med Chem. 2016;109:36–46.
Article
CAS
PubMed
Google Scholar
Sy-Cordero AA, Graf TN, Runyon SP, et al. Enhanced bioactivity of silybin b methylation products [J]. Bioorg Med Chem. 2013;21(3):742–7.
Article
CAS
PubMed
Google Scholar
Džubák P, Hajdúch M, Gažák R, et al. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and p-glycoprotein modulatory activity [J]. Bioorg Med Chem. 2006;14(11):3793–810.
Article
PubMed
CAS
Google Scholar
Althagafy HS, Graf TN, Sy-Cordero AA, et al. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-o-methylated analogues of flavonolignans from milk thistle [J]. Bioorg Med Chem. 2013;21(13):3919–26.
Article
CAS
PubMed
Google Scholar
Grande F, Parisi OI, Mordocco RA, et al. Quercetin derivatives as novel antihypertensive agents: synthesis and physiological characterization [J]. Eur J Pharm Sci. 2016;82:161–70.
Article
CAS
PubMed
Google Scholar
Kim MK, Park K-S, Lee C, et al. Enhanced stability and intracellular accumulation of quercetin by protection of the chemically or metabolically susceptible hydroxyl groups with a pivaloxymethyl (pom) promoiety [J]. J Med Chem. 2010;53(24):8597–607.
Article
CAS
PubMed
Google Scholar
Patra N, De U, Kang J-A, et al. A novel epoxypropoxy flavonoid derivative and topoisomerase ii inhibitor, mhy336, induces apoptosis in prostate cancer cells [J]. Eur J Pharmacol. 2011;658(2–3):98–107.
Article
CAS
PubMed
Google Scholar
Kumar P, Sharma G, Kumar R, et al. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: biochemical, pharmacokinetic and biodistribution evidences [J]. Int J Pharm. 2016;515(1–2):307–14.
Article
CAS
PubMed
Google Scholar
Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via egfr/vegfr-2-mediated pathway in breast cancer [J]. Cell Prolif. 2016;49:678–97.
Article
CAS
PubMed
Google Scholar
Kumar RP, Abraham A. Pvp- coated naringenin nanoparticles for biomedical applications-in vivo toxicological evaluations [J]. Chem-Biol Interact. 2016;257:110–8.
Article
CAS
PubMed
Google Scholar
Chen LC, Chen YC, Su CY, et al. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study [J]. Int J Nanomed. 2016;11:1557–66.
CAS
Google Scholar
Macedo AS, Quelhas S, Silva AM, et al. Nanoemulsions for delivery of flavonoids: formulation and in vitro release of rutin as model drug [J]. Pharm Dev Technol. 2014;19(6):677–80.
Article
CAS
PubMed
Google Scholar
Yi T, Liu C, Zhang J, et al. A new drug nanocrystal self-stabilized pickering emulsion for oral delivery of silybin [J]. Eur J Pharm Sci. 2017;96:420–7.
Article
CAS
PubMed
Google Scholar
Zhu Y, Wang M, Zhang Y, et al. In vitro release and bioavailability of silybin from micelle-templated porous calcium phosphate microparticles [J]. AAPS PharmSciTech. 2016;17(5):1232–9.
Article
CAS
PubMed
Google Scholar
Penalva R, Gonzalez-Navarro CJ, Gamazo C, et al. Zein nanoparticles for oral delivery of quercetin: pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia [J]. Nanomed Nanotechnol Biol Med. 2016;13(1):103–10.
Article
CAS
Google Scholar
Filippi A, Petrussa E, Rajcevic U, et al. Flavonoid interaction with a chitinase from grape berry skin: protein identification and modulation of the enzymatic activity [J]. Molecules (Basel, Switzerland). 2016;21(10):1300.
Article
CAS
Google Scholar
Tang L, Li S, Bi H, et al. Interaction of cyanidin-3-o-glucoside with three proteins [J]. Food Chem. 2016;196:550–9.
Article
CAS
PubMed
Google Scholar
Arroyo-Maya IJ, Campos-Teran J, Hernandez-Arana A, et al. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: binding of pelargonidin to dairy proteins [J]. Food Chem. 2016;213:431–9.
Article
CAS
PubMed
Google Scholar
Kanakis CD, Tarantilis PA, Polissiou MG, et al. Probing the binding sites of resveratrol, genistein, and curcumin with milk beta-lactoglobulin [J]. J Biomol Struct Dyn. 2013;31(12):1455–66.
Article
CAS
PubMed
Google Scholar
He Z, Xu M, Zeng M, et al. Interactions of milk alpha- and beta-casein with malvidin-3-o-glucoside and their effects on the stability of grape skin anthocyanin extracts [J]. Food Chem. 2016;199:314–22.
Article
CAS
PubMed
Google Scholar
Devendra S, Mohan SMR, Ajay S, et al. Quercetin-phospholipid complex: an amorphous pharmaceutical system in herbal drug delivery [J]. Curr Drug Discov Technol. 2012;9(1):17–24.
Article
Google Scholar
Semalty A, Semalty M, Rawat BS, et al. Pharmacosomes: the lipid-based new drug delivery system [J]. Expert Opin Drug Deliv. 2009;6(6):599–612.
Article
CAS
PubMed
Google Scholar
Zhang K, Zhang M, Liu Z, et al. Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in sd rats [J]. Fitoterapia. 2016;113:102–9.
Article
CAS
PubMed
Google Scholar