Huang T, Alvarez A, Hu B, et al. Noncoding RNAs In cancer and cancer stem cells. Chin J Cancer, 2013,32:582–593.
Article
PubMed Central
CAS
PubMed
Google Scholar
Taranger CK, Noer A, Sorensen AL, et al. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell, 2005,16:5719–5735.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu M, Jolly MK, Levine H, et al. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci U S A, 2013,110:18144–18149.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ubil E, Duan J, Pillai IC, et al. Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature, 2014,514:585–590.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lopez-Novoa JM, Nieto MA. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med, 2009,1:303–314.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chung CH, Parker JS, Ely K, et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kappaB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res, 2006,66:8210–8218.
Article
CAS
PubMed
Google Scholar
Joyce T, Cantarella D, Isella C, et al. A molecular signature for Epithelial to Mesenchymal transition in a human colon cancer cell system is revealed by large-scale microarray analysis. Clin Exp Metastasis, 2009,26:569–587.
Article
CAS
PubMed
Google Scholar
Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res, 2009,69:4116–4124.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim J, Hong SJ, Park JY, et al. Epithelial-mesenchymal transition gene signature to predict clinical outcome of hepatocellular carcinoma. Cancer Sci, 2010,101:1521–1528.
Article
CAS
PubMed
Google Scholar
Cheng WY, Kandel JJ, Yamashiro DJ, et al. A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PLoS One, 2012,7:e34705.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng Q, Chang JT, Gwin WR, et al. A signature of epithelial-mesenchymal plasticity and stromal activation in primary tumor modulates late recurrence in breast cancer independent of disease subtype. Breast Cancer Res, 2014,16:407.
Article
PubMed Central
PubMed
CAS
Google Scholar
Gujral TS, Chan M, Peshkin L, et al. A noncanonical frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell, 2014,159:844–856.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011,474:609–615.
Article
CAS
Google Scholar
Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res, 2005,65:5991–5995.
Article
CAS
PubMed
Google Scholar
Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res, 2005,65:5996–6000.
Article
CAS
PubMed
Google Scholar
Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006,172:973–981.
Article
PubMed Central
CAS
PubMed
Google Scholar
Steinestel K, Eder S, Schrader AJ, et al. Clinical significance of epithelial-mesenchymal transition. Clin Transl Med, 2014,3:17.
Article
PubMed Central
PubMed
Google Scholar
Chai S, Ma S. Clinical implications of microRNAs in liver cancer stem cells. Chin J Cancer, 2013,32:419–426.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bruce JP, Liu FF. MicroRNAs in nasopharyngeal carcinoma. Chin J Cancer, 2014,33:539–544.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hassan O, Ahmad A, Sethi S, et al. Recent updates on the role of microRNAs in prostate cancer. J Hematol Oncol, 2012,5:9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Del Vescovo V, Grasso M, Barbareschi M, et al. MicroRNAs as lung cancer biomarkers. World J Clin Oncol, 2014,5:604–620.
Article
PubMed Central
PubMed
Google Scholar
Kinose Y, Sawada K, Nakamura K, et al. The role of microRNAs in ovarian cancer. Biomed Res Int, 2014,2014:249393.
Article
PubMed Central
PubMed
CAS
Google Scholar
Sun E, Shi Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp Neurol, 2014, pii: S0014-4886(14)00257-X. doi: 10.1016/j.expneurol.2014.08.005. [Epub ahead of print].
Matuszcak C, Haier J, Hummel R, et al. MicroRNAs: Promising chemoresistance biomarkers in gastric cancer with diagnostic and therapeutic potential. World J Gastroenterol, 2014,20:13658–13666.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fortunato O, Boeri M, Verri C, et al. Therapeutic use of microRNAs in lung cancer. Biomed Res Int, 2014,2014:756975.
Article
PubMed Central
PubMed
CAS
Google Scholar
Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol, 2010,3:37.
Article
PubMed Central
PubMed
CAS
Google Scholar
Ding XM. MicroRNAs: regulators of cancer metastasis and epithelial-mesenchymal transition (EMT). Chin J Cancer, 2014,33:140–147.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang D, Sun Y, Hu L, et al. Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell, 2013,23:186–199.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun Y, Hu L, Zheng H, et al. MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol, 2015,235:25–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arora H, Qureshi R, Park WY. miR-506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One, 2013,8:e64273.
Article
PubMed Central
PubMed
Google Scholar
Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol, 2012,7:219–245.
Article
CAS
PubMed
Google Scholar
Bagnoli M, De Cecco L, Granata A, et al. Identification of a chrXq27. 3 microRNA cluster associated with early relapse in advanced stage ovarian cancer patients. Oncotarget, 2011,2:1265–1278.
Article
PubMed Central
PubMed
Google Scholar
Rodriguez MI, Peralta-Leal A, O’Valle F, et al. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genet, 2013,9:e1003531.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu G, Sun Y, Ji P, et al. MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 axis in ovarian cancer. J Pathol, 2014,233:308–318.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hao L, Ha JR, Kuzel P, et al. Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail. Br J Dermatol, 2012,166:1184–1197.
Article
CAS
PubMed
Google Scholar
Balli D, Ustiyan V, Zhang Y, et al. Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J, 2013,32:231–244.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yin M, Ren X, Zhang X, et al. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-kappaB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene, 2014, doi: 10.1038/onc.2013.597. [Epub ahead of print].
Kuphal S, Bosserhoff AK. Influence of the cytoplasmic domain of E-cadherin on endogenous N-cadherin expression in malignant melanoma. Oncogene, 2006,25:248–259.
Article
CAS
PubMed
Google Scholar
Min C, Eddy SF, Sherr DH, et al. NF-kappaB and epithelial to mesenchymal transition of cancer. J Cell Biochem, 2008,104:733–744.
Article
CAS
PubMed
Google Scholar
Graf F, Mosch B, Koehler L, et al. Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: perspectives in cancer therapy and imaging. Mini Rev Med Chem, 2010,10:527–539.
Article
CAS
PubMed
Google Scholar
Leonard JP, LaCasce AS, Smith MR, et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood, 2012,119:4597–4607.
Article
CAS
PubMed
Google Scholar
Dickson MA, Tap WD, Keohan ML, et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol, 2013,31:2024–2028.
Article
PubMed Central
CAS
PubMed
Google Scholar
Flaherty KT, Lorusso PM, Demichele A, et al. Phase I, dose-escalation trial of the oral cyclin-dependent kinase 4/6 inhibitor PD 0332991, administered using a 21-day schedule in patients with advanced cancer. Clin Cancer Res, 2012,18:568–576.
Article
CAS
PubMed
Google Scholar
Wen SY, Lin Y, Yu YQ, et al. miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene, 2014, doi: 10.1038/onc.2013.597. [Epub ahead of print].
Zhao Z, Ma X, Hsiao TH, et al. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation. Oncotarget, 2014,5:2499–2512.
Article
PubMed Central
PubMed
Google Scholar
Zhang L, Volinia S, Bonome T, et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A, 2008,105:7004–7009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cui J, Eldredge JB, Xu Y, et al. MicroRNA expression and regulation in human ovarian carcinoma cells by luteinizing hormone. PLoS One, 2011,6:e21730.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu Z, Lin Y, Chen H, et al. MicroRNA-101 suppresses motility of bladder cancer cells by targeting c-Met. Biochem Biophys Res Commun, 2013,435:82–87.
Article
CAS
PubMed
Google Scholar
Caponi S, Funel N, Frampton AE, et al. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol, 2013, 24:734–741.
Article
CAS
PubMed
Google Scholar
Semaan A, Qazi AM, Seward S, et al. MicroRNA-101 inhibits growth of epithelial ovarian cancer by relieving chromatin-mediated transcriptional repression of p21(waf(1)/cip(1)). Pharm Res, 2011,28:3079–3090.
Article
CAS
PubMed
Google Scholar
Liu L, Guo J, Yu L, et al. miR-101 regulates expression of EZH2 and contributes to progression of and cisplatin resistance in epithelial ovarian cancer. Tumour Biol, 2014, Sep 27. [Epub ahead of print].
Guo F, Cogdell D, Hu L, et al. miR-101 suppresses the epithelial-to-mesenchymal transition by targeting ZEB1 and ZEB2 in ovarian carcinoma. Oncol Rep, 2014,31:2021–2028.
PubMed Central
CAS
PubMed
Google Scholar
Wei X, Xiang T, Ren G, et al. miR-101 is down-regulated by the hepatitis B virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A. Cell Signal, 2013, 25:439–446.
Article
CAS
PubMed
Google Scholar
Lin C, Huang F, Li QZ, et al. miR-101 suppresses tumor proliferation and migration, and induces apoptosis by targeting EZH2 in esophageal cancer cells. Int J Clin Exp Pathol, 2014,7:6543–6550.
PubMed Central
CAS
PubMed
Google Scholar
Lei Q, Shen F, Wu J, et al. miR-101, downregulated in reti noblastoma, functions as a tumor suppressor in human retinoblastoma cells by targeting EZH2. Oncol Rep, 2014,32:261–269.
CAS
PubMed
Google Scholar
Wang L, Li L, Guo R, et al. miR-101 promotes breast cancer cell apoptosis by targeting Janus kinase 2. Cell Physiol Biochem, 2014,34:413–422.
Article
CAS
PubMed
Google Scholar
Manvati S, Mangalhara KC, Kalaiarasan P, et al. miR-101 Induces Senescence and Prevents Apoptosis in the Background of DNA Damage in MCF7 Cells. PLoS One, 2014,9:e111177.
Article
PubMed Central
PubMed
CAS
Google Scholar
Liang X, Liu Y, Zeng L, et al. miR-101 inhibits the G1-to-S phase transition of cervical cancer cells by targeting Fos. Int J Gynecol Cancer, 2014,24:1165–1172.
Article
PubMed
Google Scholar
Liu JJ, Lin XJ, Yang XJ, et al. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucleic Acids Res, 2014,42:12041–12051.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yao YL, Ma J, Wang P, et al. miR-101 acts as a tumor suppressor by targeting kruppel-like factor 6 in glioblastoma stem cells. CNS Neurosci Ther, 2014, doi: 10.1111/cns.12321. [Epub ahead of print].
Yan F, Shen N, Pang J, et al. Restoration of miR-101 suppresses lung tumorigenesis through inhibition of DNMT3a-dependent DNA methylation. Cell Death Dis, 2014,5:e1413.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bu Q, Fang Y, Cao Y, et al. Enforced expression of miR-101 enhances cisplatin sensitivity in human bladder cancer cells by modulating the cyclooxygenase-2 pathway. Mol Med Rep, 2014,10:2203–2209.
CAS
PubMed
Google Scholar
Strillacci A, Valerii MC, Sansone P, et al. Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol, 2013,229:379–389.
Article
CAS
PubMed
Google Scholar
Carvalho J, van Grieken NC, Pereira PM, et al. Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. J Pathol, 2012,228:31–44.
CAS
PubMed
Google Scholar
Varambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science, 2008,322:1695–1699.
Article
PubMed Central
CAS
PubMed
Google Scholar
Castilla MA, Diaz-Martin J, Sarrio D, et al. MicroRNA-200 family modulation in distinct breast cancer phenotypes. PLoS One, 2012,7:e47709.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hur K, Toiyama Y, Takahashi M, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut, 2013,62:1315–1326.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 2008,10:593–601.
Article
CAS
PubMed
Google Scholar
Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol, 2009,11:1487–1495.
Article
CAS
PubMed
Google Scholar
Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res, 2008,68:7846–7854.
Article
CAS
PubMed
Google Scholar
Mizuguchi Y, Specht S, Lunz JG 3rd, et al. Cooperation of p300 and PCAF in the control of microRNA 200c/141 transcription and epithelial characteristics. PLoS One, 2012,7:e32449.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol, 2011,13:317–323.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schubert J, Brabletz T. p53 Spreads out further: suppression of EMT and stemness by activating miR-200c expression. Cell Res, 2011,21:705–707.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu J, Rodova M, Nanta R, et al. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro Oncol, 2013,15:691–706.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo L, Chen C, Shi M, et al. Stat3-coordinated Lin-28-let-7-HMGA2 and miR-200-ZEB1 circuits initiate and maintain oncostatin M-driven epithelial-mesenchymal transition. Oncogene, 2013,32:5272–5282.
Article
CAS
PubMed
Google Scholar
Kong D, Li Y, Wang Z, et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells, 2009,27:1712–1721.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bao B, Wang Z, Ali S, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett, 2011,307:26–36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sureban SM, May R, Qu D, et al. DCLK1 regulates pluripotency and angiogenic factors via microRNA-dependent mechanisms in pancreatic cancer. PLoS One, 2013,8:e73940.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martello G, Rosato A, Ferrari F, et al. A microRNA targeting dicer for metastasis control. Cell, 2010,141:1195–1207.
Article
CAS
PubMed
Google Scholar
Li BL, Lu C, Lu W, et al. miR-130b is an EMT-related microRNA that targets DICER1 for aggression in endometrial cancer. Med Oncol, 2013,30:484.
Article
PubMed
CAS
Google Scholar
Li M, Guan X, Sun Y, et al. miR-92a family and their target genes in tumorigenesis and metastasis. Exp Cell Res, 2014,323:1–6.
Article
CAS
PubMed
Google Scholar
Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell, 2008,133:217–222.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu Y, Zhang Y, Wen J, et al. A genetic variant in the promoter region of miR-106b-25 cluster and risk of HBV infection and hepatocellular carcinoma. PLoS One, 2012,7:e32230.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kunej T, Godnic I, Ferdin J, et al. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res, 2011,717:77–84.
Article
CAS
PubMed
Google Scholar
Schulte JH, Horn S, Otto T, et al. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer, 2008,122:699–704.
Article
CAS
PubMed
Google Scholar
Aguda BD, Kim Y, Piper-Hunter MG, et al. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci U S A, 2008,105:19678–19683.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhao ZN, Bai JX, Zhou Q, et al. TSA suppresses miR-106b-93-25 cluster expression through downregulation of MYC and inhibits proliferation and induces apoptosis in human EMC. PLoS One, 2012,7:e45133.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith AL, Iwanaga R, Drasin DJ, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene, 2012,31:5162–5171.
Article
PubMed Central
CAS
PubMed
Google Scholar
Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell, 2008,13:272–286.
Article
CAS
PubMed
Google Scholar
Kan T, Sato F, Ito T, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology, 2009,136:1689–1700.
Article
PubMed Central
CAS
PubMed
Google Scholar
Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res, 2008, 68:8191–8194.
Article
CAS
PubMed
Google Scholar
Xu X, Chen Z, Zhao X, et al. MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun, 2012,421:640–645.
Article
CAS
PubMed
Google Scholar
Chen ZL, Zhao XH, Wang JW, et al. MicroRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J Biol Chem, 2011,286:10725–10734.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fang WK, Liao LD, Li LY, et al. Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol, 2013,231:257–270.
Article
CAS
PubMed
Google Scholar
Poliseno L, Salmena L, Riccardi L, et al. Identification of the miR-106b∼25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal, 2010,3:ra29.
Article
PubMed Central
PubMed
CAS
Google Scholar
Nishida N, Nagahara M, Sato T, et al. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clin Cancer Res, 2012,18:3054–3070.
Article
CAS
PubMed
Google Scholar
Li Q, Zou C, Han Z, et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett, 2013,335:168–174.
Article
CAS
PubMed
Google Scholar
Esposito F, Tornincasa M, Pallante P, et al. Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab, 2012,97:E710–E718.
Article
CAS
PubMed
Google Scholar
Zhang H, Zuo Z, Lu X, et al. miR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep, 2012,27:594–598.
CAS
PubMed
Google Scholar
Wang X, Meng X, Li H, et al. MicroRNA-25 expression level is an independent prognostic factor in epithelial ovarian cancer. Clin Transl Oncol, 2014,16:954–958.
Article
CAS
PubMed
Google Scholar
Feng S, Pan W, Jin Y, et al. miR-25 promotes ovarian cancer proliferation and motility by targeting LATS2. Tumour Biol, 2014, Sep 2. [Epub ahead of print].
Wang Y, Zhang X, Li H, et al. The role of miRNA-29 family in cancer. Eur J Cell Biol, 2013,92:123–128.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhao X, Fiskus W, et al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas. Cancer Cell, 2012,22:506–523.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maurer B, Stanczyk J, Jungel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum, 2010,62:1733–1743.
Article
CAS
PubMed
Google Scholar
Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 2011,53:209–218.
Article
CAS
PubMed
Google Scholar
Ugalde AP, Ramsay AJ, de la Rosa J, et al. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53. EMBO J, 2011,30:2219–2232.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang JX, Mai SJ, Huang XX, et al. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of beta-catenin signaling. Ann Oncol, 2014,25:2196–2204.
Article
CAS
PubMed
Google Scholar
Han TS, Hur K, Xu G, et al. MicroRNA-29c mediates initiation of gastric carcinogenesis by directly targeting ITGB1. Gut, 2014, pii: gutjnl-2013-306640. doi: 10.1136/gutjnl-2013-306640. [Epub ahead of print].
Bae HJ, Noh JH, Kim JK, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene, 2014,33:2557–2567.
Article
CAS
PubMed
Google Scholar
Pierce ML, Weston MD, Fritzsch B, et al. MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev, 2008,10:106–113.
Article
PubMed Central
CAS
PubMed
Google Scholar
Abraham D, Jackson N, Gundara JS, et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res, 2011,17:4772–4781.
Article
CAS
PubMed
Google Scholar
Lin S, Sun JG, Wu JB, et al. Aberrant microRNAs expression in CD133(+)/CD326(+) human lung adenocarcinoma initiating cells from A549. Mol Cells, 2012,33:277–283.
Article
PubMed Central
PubMed
CAS
Google Scholar
Xu X, Dong Z, Li Y, et al. The upregulation of signal transducer and activator of transcription 5-dependent microRNA-182 and microRNA-96 promotes ovarian cancer cell proliferation by targeting forkhead box O3 upon leptin stimulation. Int J Biochem Cell Biol, 2013,45:536–545.
Article
CAS
PubMed
Google Scholar
Zhang QH, Sun HM, Zheng RZ, et al. Meta-analysis of microRNA-1 83 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene, 2013,527:26–32.
Article
CAS
PubMed
Google Scholar
Kong WQ, Bai R, Liu T, et al. MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS J, 2012,279:1252–1260.
Article
CAS
PubMed
Google Scholar
Li X, Luo F, Li Q, et al. Identification of new aberrantly expressed miRNAs in intestinal-type gastric cancer and its clinical significance. Oncol Rep, 2011,26:1431–1439.
PubMed
Google Scholar
Vaksman O, Stavnes HT, Kaern J, et al. miRNA profiling along tumour progression in ovarian carcinoma. J Cell Mol Med, 2011,15:1593–1602.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu Z, Liu J, Segura MF, et al. miR-182 overexpression in tumourigenesis of high-grade serous ovarian carcinoma. J Pathol, 2012,228:204–215.
Article
CAS
PubMed
Google Scholar
Wang YQ, Guo RD, Guo RM, et al. MicroRNA-182 promotes cell growth, invasion, and chemoresistance by targeting programmed cell death 4 (PDCD4) in human ovarian carcinomas. J Cell Biochem, 2013,114:1464–1473.
Article
CAS
PubMed
Google Scholar
Wang L, Zhu MJ, Ren AM, et al. A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer. PLoS One, 2014,9:e96472.
Article
PubMed Central
PubMed
CAS
Google Scholar
Yang D, Khan S, Sun Y, et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA, 2011, 306:1557–1565.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qu Y, Li WC, Hellem MR, et al. miR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer, 2013,133:544–555.
Article
CAS
PubMed
Google Scholar
Chiang CH, Hou MF, Hung WC. Up-regulation of miR-182 by beta-catenin in breast cancer increases tumorigenicity and invasiveness by targeting the matrix metalloproteinase inhibitor RECK. Biochim Biophys Acta, 2013,1830:3067–3076.
Article
CAS
PubMed
Google Scholar
Qiu Y, Luo X, Kan T, et al. TGF-beta upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst, 2014,10:679–685.
Article
CAS
PubMed
Google Scholar
Donnem T, Fenton CG, Lonvik K, et al. MicroRNA signatures in tumor tissue related to angiogenesis in non-small cell lung cancer. PLoS One, 2012,7:e29671.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sachdeva M, Mito JK, Lee CL, et al. MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J Clin Invest, 2014,124:4305–4319.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smirnova L, Grafe A, Seiler A, et al. Regulation of miRNA expression during neural cell specification. Eur J Neurosci, 2005,21:1469–1477.
Article
PubMed
Google Scholar
Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport, 2007,18:297–300.
Article
CAS
PubMed
Google Scholar
Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 2005,11:241–247.
Article
PubMed Central
CAS
PubMed
Google Scholar
Corcoran DL, Pandit KV, Gordon B, et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One, 2009,4:e5279.
Article
PubMed Central
PubMed
CAS
Google Scholar
Monteys AM, Spengler RM, Wan J, et al. Structure and activity of putative intronic miRNA promoters. RNA, 2010,16:495–505.
Article
PubMed Central
PubMed
Google Scholar
Muinos-Gimeno M, Montfort M, Bayes M, et al. Design and evaluation of a panel of single-nucleotide polymorphisms in microRNA genomic regions for association studies in human disease. Eur J Hum Genet, 2010,18:218–226.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A, 2007,104:19971–19976.
Article
PubMed Central
CAS
PubMed
Google Scholar
Donzelli S, Fontemaggi G, Fazi F, et al. MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ, 2012,19:1038–1048.
Article
PubMed Central
CAS
PubMed
Google Scholar
Karimi M, Conserva F, Mahmoudi S, et al. Extract from Asteraceae Brachylaena ramiflora induces apoptosis preferentially in mutant p53-expressing human tumor cells. Carcinogenesis, 2010,31:1045–1053.
Article
CAS
PubMed
Google Scholar
Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006,103:2257–2261.
Article
PubMed Central
CAS
PubMed
Google Scholar
Katada T, Ishiguro H, Kuwabara Y, et al. microRNA expression profile in undifferentiated gastric cancer. Int J Oncol, 2009,34:537–542.
CAS
PubMed
Google Scholar
Khan AP, Poisson LM, Bhat VB, et al. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Mol Cell Proteomics, 2010,9:298–312.
Article
PubMed Central
CAS
PubMed
Google Scholar
Woo HH, Laszlo CF, Greco S, et al. Regulation of colony stimulating factor-1 expression and ovarian cancer cell behavior in vitro by miR-128 and miR-152. Mol Cancer, 2012,11:58.
Article
PubMed Central
CAS
PubMed
Google Scholar
Qian P, Banerjee A, Wu ZS, et al. Loss of SNAIL regulated miR-128-2 on chromosome 3p22.3 targets multiple stem cell factors to promote transformation of mammary epithelial cells. Cancer Res, 2012,72:6036–6050.
Article
CAS
PubMed
Google Scholar
Evangelisti C, Florian MC, Massimi I, et al. miR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J, 2009,23:4276–4287.
Article
CAS
PubMed
Google Scholar
Shahab SW, Matyunina LV, Hill CG, et al. The effects of microRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated. BMC Med Genomics, 2012,5:33.
Article
PubMed Central
CAS
PubMed
Google Scholar