National Cancer Institute. Available at: http://www.cancer.gov/cancertopics/types/ovarian.
Oberaigner W, Minicozzi P, Bielska-Lasota M, et al. Survival for ovarian cancer in Europe: the across-country variation did not shrink in the past decade. Acta Oncol, 2012,51:441–453.
Article
PubMed
Google Scholar
Morgan RJ, Armstrong DK, Alvarez RD, et al. NCCN guidelines for treatment of ovarian cancer. Version 3. 2014. Available at: http://www.nccn.org/professionals/physician_gls/pdf/ovarian.pdf.
Ledermann JA, Raja FA, Fotopoulou C, et al. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2013,24:vi24–vi32.
Article
PubMed
Google Scholar
Maggioni A, Benedetti Panici P, Dell’Anna T, et al. Randomised study of systematic lymphadenectomy in patients with epithelial ovarian cancer macroscopically confined to the pelvis. Br J Cancer,2006,95:699–704.
Article
PubMed Central
CAS
PubMed
Google Scholar
Panici PB, Maggioni A, Hacker N, et al. Systematic aortic and pelvic lymphadenectomy versus resection of bulky nodes only in optimally debulked advanced ovarian cancer: a randomized clinical trial. J Natl Cancer Inst, 2005,97:560–566.
Article
PubMed
Google Scholar
Lambert HE, Berry RJ. High dose cisplatin compared with high dose cyclophosphamide in the management of advanced epithelial ovarian cancer (FIGO stages III and IV): report from the North Thames Cooperative Group. Br Med J (Clin Res Ed), 1985,290: 889–893.
Article
CAS
Google Scholar
Piccart MJ, Bertelsen K, James K, et al. Randomized intergroup trial of cisplatin-paclitaxel versus cisplatin-cyclophosphamide in women with advanced epithelial ovarian cancer: three-year results. J Natl Cancer Inst, 2000,92:699–708.
Article
CAS
PubMed
Google Scholar
McGuire WP, Hoskins WJ, Brady MF, et al. Cyclophos-phamide and cisplatin compared with paclitaxel and cisplatin In patients with stage III and stage IV ovarian cancer. N Engl J Med, 1996,334:1–6
Article
CAS
PubMed
Google Scholar
du Bois A, Lück HJ, Meier W, et al. A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst, 2003,95:1320–1329.
Article
PubMed
Google Scholar
Ozols RF, Bundy BN, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol, 2003,21:3194–3200.
Article
CAS
PubMed
Google Scholar
Swenerton K, Jeffrey J, Stuart G, et al. Cisplatin-cyclophosphamide versus carboplatin-cyclophosphamide in advanced ovarian cancer: a randomized phase III study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol, 1992,10:718–726.
CAS
PubMed
Google Scholar
Bookman MA, Brady MF, McGuire WP, et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Intergroup. J Clin Oncol, 2009,27:1419–1425.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lambert HE, Rustin GJ, Gregory WM, et al. A randomized trial of five versus eight courses of cisplatin or carboplatin in advanced epithelial ovarian carcinoma. A North Thames Ovary Group Study. Ann Oncol, 1997,8:327–333.
Article
CAS
PubMed
Google Scholar
Kim HS, Park NH, Chung HH, et al. Are three additional cycles of chemotherapy useful in patients with advanced-stage epithelial ovarian cancer after a complete response to six cycles of intravenous adjuvant paclitaxel and carboplatin. Jpn J Clin Oncol, 2008,38:445–450.
Article
PubMed Central
PubMed
Google Scholar
Chi DS, Liao JB, Leon LF, et al. Identification of prognostic factors in advanced epithelial ovarian carcinoma. Gynecol Oncol, 2001,82:532–537.
Article
CAS
PubMed
Google Scholar
Bristow RE, Chi DS. Platinum-based neoadjuvant chemotherapy and interval surgical cytoreduction for advanced ovarian cancer: a meta-analysis. Gynecol Oncol, 2006,103:1070–1076.
Article
CAS
PubMed
Google Scholar
Vergote I, De Wever I, Tjalma W, et al. Neoadjuvant chemotherapy or primary debulking surgery in advanced ovarian carcinoma: a retrospective analysis of 285 patients. Gynecol Oncol, 1998,71:431–436.
Article
CAS
PubMed
Google Scholar
Vergote I, Tropé CG, Amant F, et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med, 2010,363:943–953.
Article
CAS
PubMed
Google Scholar
Kehoe S, Hook J, Nankivell M, et al. Chemotherapy or upfront surgery for newly diagnosed advanced ovarian cancer: results from the MRC CHORUS trial. J Clin Oncol, 2013,31 suppl:abstr 5500. Available at: http://meetinglibrary.asco.org/content/112631-132.
Vergote I, Tropè CG, Amant F, et al. Neoadjuvant chemotherapy is the better treatment option in some patients with stage IIIC to IV ovarian cancer. J Clin Oncol, 2011,29:4076–4078.
Article
CAS
PubMed
Google Scholar
Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med, 2006,354:34–43.
Article
CAS
PubMed
Google Scholar
Markman M, Bundy BN, Alberts DS, et al. Phase III trial of standarddose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol, 2001,19:1001–1007.
CAS
PubMed
Google Scholar
Tewari D, Java J, Salani R, et al. Long-term survival advantage of intraperitoneal chemotherapy treatment in advanced ovarian cancer: an analysis of a Gynecologic Oncology Group ancillary data study. Gynecol Oncol, 2013,130:e4.
Article
Google Scholar
Lopes NM, Adams EG, Pitts TW, et al. Cell kill kinetics and cell cycle effects of taxol on human and hamster ovarian cell lines. Cancer Chemother Pharmacol, 1993,32:235–242.
Article
CAS
PubMed
Google Scholar
Jordan MA, Wendell K, Gardiner S, et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res, 1996,56:816–825.
CAS
PubMed
Google Scholar
Klauber N, Parangi S, Flynn E, et al. Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol. Cancer Res, 1997,57:81–86.
CAS
PubMed
Google Scholar
Seidman AD, Berry D, Cirrincione C, et al. Randomized phase I I I trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol, 2008,26:1642–1649.
Article
CAS
PubMed
Google Scholar
Sparano JA, Wang M, Martino S, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med, 2008,358:1663–1671.
Article
PubMed Central
CAS
PubMed
Google Scholar
Katsumata N, Yasuda M, Takahashi F, et al. Japanese Gynecologic Oncology Group. Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomized controlled trial. Lancet, 2009,374:1331–1338.
Article
CAS
PubMed
Google Scholar
Katsumata N, Yasuda M, Isonishi S, et al. Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): a randomized, controlled, open-label trial. Lancet Oncol, 2013,14:1020–1026.
Article
CAS
PubMed
Google Scholar
Pignata S, Scambia G, Katsaros D, et al. Carboplatin plus paclitaxel once a week versus every 3 weeks in patients with advanced ovarian cancer (MITO-7): a randomized, multicentre, open-label, phase 3 trial. Lancet Oncol, 2014,15:396–405.
Article
CAS
PubMed
Google Scholar
Ma BB, Hui EP, Mok TS. Population-based differences in treatment outcome following anticancer drug therapies. Lancet Oncol, 2010,11:75–84.
Article
PubMed
Google Scholar
Gonzalez-Martin A, Gladieff L, Tholander B, et al. Efficacy and safety results from OCTAVIA, a single-arm phase II study evaluating front-line bevacizumab, carboplatin and weekly paclitaxel for ovarian cancer. Eur J Cancer, 2013,49:3831–3838.
Article
CAS
PubMed
Google Scholar
van der Burg ME, Onstenk W, Boere IA, et al. Long-term results of a randomized phase III trial of weekly versus three-weekly paclitaxel/platinum induction therapy followed by standard or extended three-weekly paclitaxel/platinum in European patients with advanced epithelial ovarian cancer. Eur J Cancer, 201450:2592–2601.
Chan J, Brady MF, Penson R, et al. Phase III trial of every-3-weeks paclitaxel vs. dose dense weekly paclitaxel with carboplatin +/~~ bevacizumab in epithelial ovarian, peritoneal, fallopian tube cancer: GOG262 (NCT01167712). Int J Gynecol Cancer, 2013,23(8 Suppl 1):9–10.
Google Scholar
Vasey PA, Jayson GC, Gordon A, et al. Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as firstline chemotherapy for ovarian carcinoma. J Natl Cancer Inst, 2004,96:1682–1691.
Article
CAS
PubMed
Google Scholar
Vasey PA, Atkinson R, Coleman R, et al. Docetaxel-carboplatin as first line chemotherapy for epithelial ovarian cancer. Br J Cancer, 2001,84:170–178.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pignata S, Scambia G, Ferrandina G, et al. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol, 2011,29:3628–2635.
Article
CAS
PubMed
Google Scholar
Pujade-Lauraine E, Wagner U, Aavall-Lundqvist E, et al. Pegylated liposomal doxorubicin and carboplatin compared with paclitaxel and carboplatin for patients with platinum-sensitive ovarian cancer in late relapse. J Clin Oncol, 2010,28:3323–3329.
Article
CAS
PubMed
Google Scholar
Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med, 2011,365:2473–2483.
Article
CAS
PubMed
Google Scholar
Perren TJ, Swart AM, Pfisterer J, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med, 2011,365:2484–2496.
Article
CAS
PubMed
Google Scholar
Oza AM, Perren TJ, Swart AM, et al. ICON7: final overall survival results in the GCIG phase III randomized trial of bevacizumab in women with newly diagnosed ovarian cancer. ECCO 2013. Abstract No. 6. Available at: http://2013.europeancancercongress.org/Scientific-Programme/Abstract-search.aspx?abstractid=8966.
Aghajanian C, Blank SV, Goff BA, et al. OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube. J Clin Oncol, 2012,30:2039–2045.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pujade-Lauraine E, Hilpert F, Weber B, et al. Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol, 2014,32:1302–1308.
Article
CAS
PubMed
Google Scholar
Backen A, Renehan AG, Clamp AR, et al. The combination of circulating Ang1 and Tie2 levels predicts progression-free survival advantage in bevacizumab-treated patients with ovarian cancer. Clin Cancer Res, 2014,20:4549–4558.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gourley C, McCavigan A, Perren T, et al. Molecular subgroup of high-grade serous ovarian cancer (HGSOC) as a predictor of outcome following bevacizumab. J Clin Oncol, 2014,32 suppl:abstr 5502. Available at: http://meetinglibrary.asco.org/content/133112-144.
Sonpavde G, Huston TE. Pazopanib: a novel multitargetedtyrosin kinase inhibitor. Curr Oncol Rep, 2007,9:115–119.
Article
CAS
PubMed
Google Scholar
Pick AM, Nystrom KK. Pazopanib for the treatment of metastatic renal cell carcinoma. Clin Ther, 2012,34: 511–520.
Article
CAS
PubMed
Google Scholar
Raspollini MR, Castiglione F, Garbini F, et al. Correlation of epidermal growth factor receptor expression with tumor microdensity vessels and with vascular endothelial growth factor expression in ovarian carcinoma. Int J Surg Pathol, 2005,13:135–142.
Article
CAS
PubMed
Google Scholar
Yamamoto S, Konishi I, Mandai M, et al. Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. Br J Cancer, 1997,76:1221–1227.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol, 1998,153:1249–1256.
Article
PubMed Central
CAS
PubMed
Google Scholar
Friedlander M, Hancock KC, Rischin D, et al. A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecol Oncol, 2010,119:32–37.
Article
CAS
PubMed
Google Scholar
du Bois A, Floquet A, Kim JW, et al. Incorporation of pazopanib in maintenance therapy of ovarian cancer. J Clin Oncol, 2014, 32:3374–3382.
Article
PubMed
Google Scholar
Hilberg F, Roth GJ, Krssak M, et al. BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res, 2008,68:4774–4782.
Article
CAS
PubMed
Google Scholar
Richeldi L, DuBois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med, 2014,370:2071–2082.
Article
PubMed
Google Scholar
Du Bois A, Kristensen G, Ray-Coquard I, et al. AGO-OVAR 12: a randomized placebo-controlled GCIG/ENGOT-Intergroup phase III trial of standard frontline chemotherapy +/~~ nintedanib for advanced ovarian cancer. Int J Gynecol Cancer, 2013,23(8 Suppl 1):7–8.
Google Scholar
Liu JF, Konstantinopoulos PA, Matulonis UA. PARP inhibitors in ovarian cancer: current status and future promise. Gynecol Oncol, 2014,133:362–369.
Article
CAS
PubMed
Google Scholar
Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 2011,474:609–615.
Article
Google Scholar
Alsop K, Fereday S, Meldrum C, et al. BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol, 2012,30:2654–2663.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer, 2005,104:2807–2816.
Article
CAS
PubMed
Google Scholar
Hennessy BT, Timms KM, Carey MS, et al. Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer. J Clin Oncol, 2010,28:3570–3576.
Article
PubMed Central
PubMed
Google Scholar
Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med, 2012,366:1382–1392.
Article
CAS
PubMed
Google Scholar
Kaye SB, Lubinski J, Matulonis U, et al. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. J Clin Oncol, 2012,30:372–379.
Article
CAS
PubMed
Google Scholar
Oza AM, Cibula D, Oaknin A, et al. Olaparib plus paclitaxel plus carboplatin (P/C) followed by olaparib maintenance treatment in patients (pts) with platinum-sensitive recurrent serous ovarian cancer (PSR SOC): a randomized, open-label phase II study. J Clin Oncol, 2012,30 Suppl:abstr 5001.
Ledermann JA, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer (SOC) and a BRCA mutation (BRCAm). 2013 ASCO Annual Meeting. Abstract 5505. Available at: http://meetinglibrary.asco.org/content/112248-132.
Ledermann JA, Perren TJ, Raja FA, et al. Randomised doubleblind phase III trial of cediranib (AZD 2171) in relapsed platinum sensitive ovarian cancer: results of the ICON6 trial. ESMO 2013. Abstract No. 10. Available at: http://2013.europeancancercongress.org/Scientific-Programme/Abstract-search?abstractid=8897.
Farley J, Brady WE, Vathipadiekal V, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol, 2013,14:134–140.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jin Y, Li Y, Pan L. The target therapy of ovarian clear cell carcinoma. Onco Targets Ther, 2014,7:1647–1652.
Article
PubMed Central
CAS
PubMed
Google Scholar