Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–49. https://doi.org/10.1038/nrc.2016.89.
Article
PubMed
CAS
Google Scholar
Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5:e189. https://doi.org/10.1038/oncsis.2015.49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tirinato L, Pagliari F, Limongi T, Marini M, Falqui A, Seco J, et al. An overview of lipid droplets in cancer and cancer stem cells. Stem Cells Int. 2017;2017:17. https://doi.org/10.1155/2017/1656053.
Article
Google Scholar
Tirinato L, Liberale C, Di Franco S, Candeloro P, Benfante A, La Rocca R, et al. Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells. 2015;33(1):35–44. https://doi.org/10.1002/stem.1837.
Article
PubMed
CAS
Google Scholar
Koizume S, Miyagi Y. Lipid droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci. 2016;17(9):1430. https://doi.org/10.3390/ijms17091430.
Article
PubMed Central
CAS
Google Scholar
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3982–8. https://doi.org/10.1073/pnas.0530291100.
Article
CAS
Google Scholar
O’Brien CA, Kreso A, Jamieson CHM. Cancer stem cells and self-renewal. Clin Cancer Res. 2010;16(12):3113.
Article
PubMed
Google Scholar
Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23(1):675–99. https://doi.org/10.1146/annurev.cellbio.22.010305.104154.
Article
PubMed
CAS
Google Scholar
Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO, et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci. 2011;108(19):7950–5. https://doi.org/10.1073/pnas.1102454108.
Article
PubMed
Google Scholar
Chaffer Christine L, Marjanovic Nemanja D, Lee T, Bell G, Kleer Celina G, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154(1):61–74. https://doi.org/10.1016/j.cell.2013.06.005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gupta Piyush B, Fillmore Christine M, Jiang G, Shapira Sagi D, Tao K, Kuperwasser C, et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146(4):633–44. https://doi.org/10.1016/j.cell.2011.07.026.
Article
PubMed
CAS
Google Scholar
Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141(4):583–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen W, Dong J, Haiech J, Kilhoffer M-C, Zeniou M. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016;2016:1740936. https://doi.org/10.1155/2016/1740936.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deheeger M, Lesniak MS, Ahmed AU. Cellular plasticity regulated cancer stem cell niche: a possible new mechanism of chemoresistance. Cancer Cell Microenviron. 2014;1(5):e295. https://doi.org/10.14800/ccm.295.
Article
PubMed
PubMed Central
CAS
Google Scholar
Borst P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open Biol. 2012;2(5):120066. https://doi.org/10.1098/rsob.120066.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dannenberg J-H, Berns A. Drugging drug resistance. Cell. 2010;141(1):18–20. https://doi.org/10.1016/j.cell.2010.03.020.
Article
PubMed
CAS
Google Scholar
Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, Morinishi LS et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun. 2016;7:10690. https://doi.org/10.1038/ncomms10690 https://www.nature.com/articles/ncomms10690#supplementary-information.
Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141(1):69–80. https://doi.org/10.1016/j.cell.2010.02.027.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18:55. https://doi.org/10.1186/s13058-016-0712-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sancho P, Barneda D, Heeschen C. Hallmarks of cancer stem cell metabolism. Br J Cancer. 2016;114(12):1305–12. https://doi.org/10.1038/bjc.2016.152.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vlashi E, Pajonk F. The metabolic state of cancer stem cells—a valid target for cancer therapy? Free Radic Biol Med. 2015;79:264–8. https://doi.org/10.1016/j.freeradbiomed.2014.10.732.
Article
PubMed
CAS
Google Scholar
Dando I, Dalla Pozza E, Biondani G, Cordani M, Palmieri M, Donadelli M. The metabolic landscape of cancer stem cells. IUBMB Life. 2015;67(9):687–93. https://doi.org/10.1002/iub.1426.
Article
PubMed
CAS
Google Scholar
Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Can Res. 2009;69(19):7507–11. https://doi.org/10.1158/0008-5472.CAN-09-2994.
Article
CAS
Google Scholar
Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci. 2012;122(6):253–70. https://doi.org/10.1042/cs20110386.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong C, Yuan T, Wu Y, Wang Y, Fan Teresa WM, Miriyala S, et al. Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23(3):316–31. https://doi.org/10.1016/j.ccr.2013.01.022.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Luca A, Fiorillo M, Peiris-Pagès M, Ozsvari B, Smith DL, Sanchez-Alvarez R, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget. 2015;6(17):14777–95.
PubMed
PubMed Central
Google Scholar
Pastò A, Bellio C, Pilotto G, Ciminale V, Silic-Benussi M, Guzzo G, et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget. 2014;5(12):4305–19.
Article
PubMed
PubMed Central
Google Scholar
Medes G, Thomas A, Weinhouse S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Can Res. 1953;13(1):27.
CAS
Google Scholar
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.
Article
PubMed
CAS
Google Scholar
Al-Bahlani S, Al-Lawati H, Al-Adawi M, Al-Abri N, Al-Dhahli B, Al-Adawi K. Fatty acid synthase regulates the chemosensitivity of breast cancer cells to cisplatin-induced apoptosis. Apoptosis. 2017;22(6):865–76. https://doi.org/10.1007/s10495-017-1366-2.
Article
PubMed
CAS
Google Scholar
Bauerschlag DO, Maass N, Leonhardt P, Verburg FA, Pecks U, Zeppernick F, et al. Fatty acid synthase overexpression: target for therapy and reversal of chemoresistance in ovarian cancer. J Transl Med. 2015;13(1):146. https://doi.org/10.1186/s12967-015-0511-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai Y, Wang J, Zhang L, Wu D, Yu D, Tian X, et al. Expressions of fatty acid synthase and HER2 are correlated with poor prognosis of ovarian cancer. Med Oncol. 2015;32:391. https://doi.org/10.1007/s12032-014-0391-z.
Article
PubMed
CAS
Google Scholar
Dehghan-Nayeri NGA, Goudarzi Pour K, Eshghi P. Over expression of the fatty acid synthase is a strong predictor of poor prognosis and contributes to glucocorticoid resistance in B-cell acute lymphoblastic leukemia. World Cancer Res J. 2016;3(3):e746.
Google Scholar
Lupu R, Menendez JA. Targeting fatty acid synthase in breast and endometrial cancer: an alternative to selective estrogen receptor modulators? Endocrinology. 2006;147(9):4056–66. https://doi.org/10.1210/en.2006-0486.
Article
PubMed
CAS
Google Scholar
Wu X, Dong Z, Wang CJ, Barlow LJ, Fako V, Serrano MA, et al. FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1. Proc Natl Acad Sci. 2016;113(45):E6965–73. https://doi.org/10.1073/pnas.1609934113.
Article
CAS
Google Scholar
Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010;6(4):551–62. https://doi.org/10.2217/fon.10.11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 2004;5(3):253–61. https://doi.org/10.1016/S1535-6108(04)00055-8.
Article
PubMed
CAS
Google Scholar
Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Can Res. 2012;72(15):3709.
Article
CAS
Google Scholar
Qian X, Hu J, Zhao J, Chen H. ATP citrate lyase expression is associated with advanced stage and prognosis in gastric adenocarcinoma. Int J Clin Exp Med. 2015;8(5):7855–60.
PubMed
PubMed Central
CAS
Google Scholar
Wang D, Yin L, Wei J, Yang Z, Jiang G. ATP citrate lyase is increased in human breast cancer, depletion of which promotes apoptosis. Tumor Biol. 2017;39(4):1010428317698338. https://doi.org/10.1177/1010428317698338.
Article
Google Scholar
Wang YU, Wang Y, Shen L, Pang Y, Qiao Z, Liu P. Prognostic and therapeutic implications of increased ATP citrate lyase expression in human epithelial ovarian cancer. Oncol Rep. 2012;27(4):1156–62. https://doi.org/10.3892/or.2012.1638.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Y, Bollu LR, Tozzi F, Ye X, Bhattacharya R, Gao G, et al. ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol Cancer Ther. 2013;12(12):2782–91. https://doi.org/10.1158/1535-7163.MCT-13-0098.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sato R, Okamoto A, Inoue J, Miyamoto W, Sakai Y, Emoto N, et al. Transcriptional regulation of the ATP citrate-lyase gene by sterol regulatory element-binding proteins. J Biol Chem. 2000;275(17):12497–502. https://doi.org/10.1074/jbc.275.17.12497.
Article
PubMed
CAS
Google Scholar
Migita T, Narita T, Nomura K, Miyagi E, Inazuka F, Matsuura M, et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Can Res. 2008;68(20):8547.
Article
CAS
Google Scholar
Pierce MW, Palmer JL, Keutmann HT, Avruch J. ATP-citrate lyase. Structure of a tryptic peptide containing the phosphorylation site directed by glucagon and the cAMP-dependent protein kinase. J Biol Chem. 1981;256(17):8867–70.
PubMed
CAS
Google Scholar
Wagner PD, Vu N-D. Phosphorylation of ATP-citrate lyase by nucleoside diphosphate kinase. J Biol Chem. 1995;270(37):21758–64. https://doi.org/10.1074/jbc.270.37.21758.
Article
PubMed
CAS
Google Scholar
Moncur JT, Park JP, Memoli VA, Mohandas TK, Kinlaw WB. The “Spot 14” gene resides on the telomeric end of the 11q13 amplicon and is expressed in lipogenic breast cancers: implications for control of tumor metabolism. Proc Natl Acad Sci USA. 1998;95(12):6989–94.
Article
PubMed
CAS
Google Scholar
Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 2016;22(10):1108–19. https://doi.org/10.1038/nm.4181 http://www.nature.com/nm/journal/v22/n10/abs/nm.4181.html#supplementary-information.
Fang W, Cui H, Yu D, Chen Y, Wang J, Yu G. Increased expression of phospho-acetyl-CoA carboxylase protein is an independent prognostic factor for human gastric cancer without lymph node metastasis. Med Oncol. 2014;31(7):15. https://doi.org/10.1007/s12032-014-0015-7.
Article
PubMed
CAS
Google Scholar
Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Supplement):S138–43. https://doi.org/10.1194/jlr.R800079-JLR200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61. https://doi.org/10.1016/j.cmet.2013.05.017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang Y, Viscarra J, Kim S-J, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015;16:678. https://doi.org/10.1038/nrm4074.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao LF, Iwasaki Y, Zhe W, Nishiyama M, Taguchi T, Tsugita M, et al. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription. Endocr J. 2010;57(4):317–24. https://doi.org/10.1507/endocrj.K09E-298.
Article
PubMed
CAS
Google Scholar
Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes. 2008;32:S7. https://doi.org/10.1038/ijo.2008.116.
Article
CAS
Google Scholar
Cho YS, Lee JI, Shin D, Kim HT, Jung HY, Lee TG, et al. Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK. Biochem Biophys Res Commun. 2010;391(1):187–92. https://doi.org/10.1016/j.bbrc.2009.11.029.
Article
PubMed
CAS
Google Scholar
Munday MR, Campbell DG, Carling D, Hardie DG. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase. Eur J Biochem. 1988;175(2):331–8. https://doi.org/10.1111/j.1432-1033.1988.tb14201.x.
Article
PubMed
CAS
Google Scholar
Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen Z-P et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013;19:1649. https://doi.org/10.1038/nm.3372 https://www.nature.com/articles/nm.3372#supplementary-information.
Rios Garcia M, Steinbauer B, Srivastava K, Singhal M, Mattijssen F, Maida A, et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence. Cell Metab. 2017;26(6):842–55. https://doi.org/10.1016/j.cmet.2017.09.018.
Article
PubMed
CAS
Google Scholar
Luo J, Hong Y, Lu Y, Qiu S, Chaganty BKR, Zhang L, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett. 2017;384:39–49. https://doi.org/10.1016/j.canlet.2016.09.020.
Article
PubMed
CAS
Google Scholar
Watkins PA, Maiguel D, Jia Z, Pevsner J. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res. 2007;48(12):2736–50. https://doi.org/10.1194/jlr.M700378-JLR200.
Article
PubMed
CAS
Google Scholar
Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27(1):57–71. https://doi.org/10.1016/j.ccell.2014.12.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014;159(7):1591–602. https://doi.org/10.1016/j.cell.2014.11.020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159(7):1603–14. https://doi.org/10.1016/j.cell.2014.11.025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Björnson E, Mukhopadhyay B, Asplund A, Pristovsek N, Cinar R, Romeo S, et al. Stratification of hepatocellular carcinoma patients based on acetate utilization. Cell Rep. 2015;13(9):2014–26. https://doi.org/10.1016/j.celrep.2015.10.045.
Article
PubMed
CAS
Google Scholar
Luong A, Hannah VC, Brown MS, Goldstein JL. Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem. 2000;275(34):26458–66. https://doi.org/10.1074/jbc.M004160200.
Article
PubMed
CAS
Google Scholar
Sone H, Shimano H, Sakakura Y, Inoue N, Amemiya-Kudo M, Yahagi N, et al. Acetyl-coenzyme A synthetase is a lipogenic enzyme controlled by SREBP-1 and energy status. Am J Physiol Endocrinol Metab. 2002;282(1):E222.
Article
PubMed
CAS
Google Scholar
Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227–32. https://doi.org/10.1038/nrc3483.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schreurs M, Kuipers F, Van Der Leij FR. Regulatory enzymes of mitochondrial β-oxidation as targets for treatment of the metabolic syndrome. Obes Rev. 2010;11(5):380–8. https://doi.org/10.1111/j.1467-789X.2009.00642.x.
Article
PubMed
CAS
Google Scholar
Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther. 2014;13(10):2361.
Article
PubMed
PubMed Central
CAS
Google Scholar
Flaig TW, Salzmann-Sullivan M, Su L-J, Zhang Z, Joshi M, Gijón MA, et al. Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. Oncotarget. 2017;8(34):56051–65. https://doi.org/10.18632/oncotarget.17359.
Article
PubMed
PubMed Central
Google Scholar
Pucci S, Zonetti MJ, Fisco T, Polidoro C, Bocchinfuso G, Palleschi A, et al. Carnitine palmitoyl transferase-1A (CPT1A): a new tumor specific target in human breast cancer. Oncotarget. 2016;7(15):19982–96. https://doi.org/10.18632/oncotarget.6964.
Article
PubMed
PubMed Central
Google Scholar
Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, Elam MB, et al. Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carnitine palmitoyltransferase IA (CPT-1A) via independent gene elements. Mol Cell Endocrinol. 2010;325(1–2):54–63. https://doi.org/10.1016/j.mce.2010.05.019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tachibana K, Yamasaki D, Ishimoto K, Doi T. The role of PPARs in cancer. PPAR Res. 2008;2008:102737. https://doi.org/10.1155/2008/102737.
Article
PubMed
PubMed Central
CAS
Google Scholar
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Investig. 2010;120(1):142–56. https://doi.org/10.1172/JCI38942.
Article
PubMed
CAS
Google Scholar
Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J, et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25(10):1041–51. https://doi.org/10.1101/gad.1987211.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim WT, Yun SJ, Yan C, Jeong P, Kim YH, Lee I-S, et al. Metabolic pathway signatures associated with urinary metabolite biomarkers differentiate bladder cancer patients from healthy controls. Yonsei Med J. 2016;57(4):865–71. https://doi.org/10.3349/ymj.2016.57.4.865.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeh C-S, Wang J-Y, Cheng T-L, Juan C-H, Wu C-H, Lin S-R. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by microarray-bioinformatics analysis. Cancer Lett. 2006;233(2):297–308. https://doi.org/10.1016/j.canlet.2005.03.050.
Article
PubMed
CAS
Google Scholar
Wang T, Fahrmann JF, Lee H, Li Y-J, Tripathi SC, Yue C, et al. JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 2018;27(1):136–50. https://doi.org/10.1016/j.cmet.2017.11.001.
Article
PubMed
CAS
Google Scholar
Camarda R, Zhou Z, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22(4):427–32. https://doi.org/10.1038/nm.4055.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park JH, Vithayathil S, Kumar S, Sung P-L, Dobrolecki LE, Putluri V, et al. Fatty acid oxidation-driven src links mitochondrial energy reprogramming and regulation of oncogenic properties in triple negative breast cancer. Cell Rep. 2016;14(9):2154–65. https://doi.org/10.1016/j.celrep.2016.02.004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo H, Zeng W, Feng L, Yu X, Li P, Zhang K, et al. Integrated transcriptomic analysis of distance-related field cancerization in rectal cancer patients. Oncotarget. 2017;8(37):61107–17. https://doi.org/10.18632/oncotarget.17864.
Article
PubMed
PubMed Central
Google Scholar
Valentino A, Calarco A, Di SA, Finicelli M, Crispi S, Calogero RA et al. Deregulation of microRNAs mediated control of carnitine cycle in prostate cancer: molecular basis and pathophysiological consequences. Oncogene. 2017;36:6030. https://doi.org/10.1038/onc.2017.216. https://www.nature.com/articles/onc2017216#supplementary-information.
Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, et al. Inhibition of fatty acid synthase decreases expression of stemness markers in glioma stem cells. PLoS ONE. 2016;11(1):e0147717. https://doi.org/10.1371/journal.pone.0147717.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brandi J, Dando I, Pozza ED, Biondani G, Jenkins R, Elliott V, et al. Proteomic analysis of pancreatic cancer stem cells: functional role of fatty acid synthesis and mevalonate pathways. J Proteomics. 2017;150(Supplement C):310–22. https://doi.org/10.1016/j.jprot.2016.10.002.
Article
PubMed
CAS
Google Scholar
Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, Howe EN, Edgerton SM, Anderson SM, et al. Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer. 2014;5(6):374–89. https://doi.org/10.1007/s12672-014-0188-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat. 2011;130(2):387–98. https://doi.org/10.1007/s10549-010-1300-6.
Article
PubMed
CAS
Google Scholar
Hanai Ji, Doro N, Seth P, Sukhatme VP. ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death Dis. 2013;4:e696. https://doi.org/10.1038/cddis.2013.215. https://www.nature.com/articles/cddis2013215#supplementary-information.
Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, et al. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget. 2014;5(18):8306–16.
Article
PubMed
PubMed Central
Google Scholar
Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 2017;20(3):303–14. https://doi.org/10.1016/j.stem.2016.11.004.
Article
PubMed
CAS
Google Scholar
Parrales A, Ranjan A, Iwakuma T. Unsaturated fatty acids regulate stemness of ovarian cancer cells through NF-κB. Stem Cell Investig. 2017;4(6):49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7(5):e2226. https://doi.org/10.1038/cddis.2016.132.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Yao J, Wang J, Zhang Q, Brady SW, Arun B, et al. Targeting aberrant p70S6K activation for estrogen receptor–negative breast cancer prevention. Cancer Prev Res. 2017;10(11):641–50. https://doi.org/10.1158/1940-6207.CAPR-17-0106.
Article
CAS
Google Scholar
Wang X, Sun Y, Wong J, Conklin DS. PPAR[gamma] maintains ERBB2-positive breast cancer stem cells. Oncogene. 2013;32(49):5512–21. https://doi.org/10.1038/onc.2013.217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuo C-Y, Cheng C-T, Hou P, Lin Y-P, Ma H, Chung Y, et al. HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity. Oncotarget. 2016;7(23):34052–69. https://doi.org/10.18632/oncotarget.8570.
Article
PubMed
PubMed Central
Google Scholar
Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016;532:255. https://doi.org/10.1038/nature17393. https://www.nature.com/articles/nature17393#supplementary-information.
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011;481:380. https://doi.org/10.1038/nature10602. https://www.nature.com/articles/nature10602#supplementary-information.
Palm W, Park Y, Wright K, Pavlova NN, Tuveson DA, Thompson CB. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell. 2015;162(2):259–70. https://doi.org/10.1016/j.cell.2015.06.017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jung YY, Kim HM, Koo JS. Expression of lipid metabolism-related proteins in metastatic breast cancer. PLoS ONE. 2015;10(9):e0137204. https://doi.org/10.1371/journal.pone.0137204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim S, Lee Y, Koo JS. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS ONE. 2015;10(3):e0119473. https://doi.org/10.1371/journal.pone.0119473.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen C-L, Uthaya Kumar D, Punj V, Xu J, Sher L, Tahara S, et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab. 2016;23(1):206–19. https://doi.org/10.1016/j.cmet.2015.12.004.
Article
PubMed
CAS
Google Scholar
Yin X, Dwyer J, Langley SR, Mayr U, Xing Q, Drozdov I, et al. Effects of perhexiline-induced fuel switch on the cardiac proteome and metabolome. J Mol Cell Cardiol. 2013;55(Supplement C):27–30. https://doi.org/10.1016/j.yjmcc.2012.12.014.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12:133. https://doi.org/10.1038/nrc3184.
Article
PubMed
CAS
Google Scholar
Wu Y, Chen K, Liu X, Huang L, Zhao D, Li L, et al. Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming. Stem Cells. 2016;34(1):83–92. https://doi.org/10.1002/stem.2209.
Article
PubMed
CAS
Google Scholar
Cammisotto PG, Bukowiecki LJ. Mechanisms of leptin secretion from white adipocytes. Am J Physiol Cell Physiol. 2002;283(1):C244.
Article
PubMed
CAS
Google Scholar
Choy L, Skillington J, Derynck R. Roles of autocrine TGF-β receptor and smad signaling in adipocyte differentiation. J Cell Biol. 2000;149(3):667.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191–200. https://doi.org/10.5114/aoms.2013.33181.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546. https://doi.org/10.1155/2013/291546.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10(8):455–65. https://doi.org/10.1038/nrendo.2014.94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochimica et Biophysica Acta Mol Cell Biol Lipids. 2010;1801(3):209–14. https://doi.org/10.1016/j.bbalip.2009.10.006.
Article
CAS
Google Scholar
Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang L-S, et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103–7. https://doi.org/10.1038/nature08097.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi X, Zhang Y, Zheng J, Pan J. Reactive oxygen species in cancer stem cells. Antioxid Redox Signal. 2012;16(11):1215–28. https://doi.org/10.1089/ars.2012.4529.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal and tumor stem cells. Adv Cancer Res. 2014;122:1–67. https://doi.org/10.1016/B978-0-12-420117-0.00001-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pike LS, Smift AL, Croteau NJ, Ferrick DA, Wu M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochimica et Biophysica Acta Bioenergetics. 2011;1807(6):726–34. https://doi.org/10.1016/j.bbabio.2010.10.022.
Article
CAS
Google Scholar
O’Callaghan C, Vassilopoulos A. Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell. 2017;16(6):1208–18. https://doi.org/10.1111/acel.12685.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458:1056. https://doi.org/10.1038/nature07813 https://www.nature.com/articles/nature07813#supplementary-information.
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009;324(5930):1076.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 2010;464:121. https://doi.org/10.1038/nature08778. https://www.nature.com/articles/nature08778#supplementary-information.
Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci. 2006;103(27):10224–9. https://doi.org/10.1073/pnas.0603968103.
Article
PubMed
CAS
Google Scholar
Gao X, Lin S-H, Ren F, Li J-T, Chen J-J, Yao C-B et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960. https://doi.org/10.1038/ncomms11960. https://www.nature.com/articles/ncomms11960#supplementary-information .
Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee J-H, et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017;66(5):684–97. https://doi.org/10.1016/j.molcel.2017.04.026.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, et al. Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab. 2015;21(3):392–402. https://doi.org/10.1016/j.cmet.2015.02.002.
Article
PubMed
CAS
Google Scholar
McDonnell E, Crown SB, Fox DB, Kitir B, Ilkayeva OR, Olsen CA, et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 2016;17(6):1463–72. https://doi.org/10.1016/j.celrep.2016.10.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Z, Rich JN. Hypoxia and hypoxia inducible factors in cancer stem cell maintenance. In: Simon MC, editor. Diverse effects of hypoxia on tumor progression. Berlin: Springer; 2010. p. 21–30.
Chapter
Google Scholar
Qin J, Liu Y, Lu Y, Liu M, Li M, Li J, et al. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep. 2017;7(1):10592. https://doi.org/10.1038/s41598-017-09244-8.
Article
PubMed
PubMed Central
Google Scholar
Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci. 2016;113(14):E2047–56. https://doi.org/10.1073/pnas.1602883113.
Article
PubMed
CAS
Google Scholar
Valli A, Rodriguez M, Moutsianas L, Fischer R, Fedele V, Huang H-L, et al. Hypoxia induces a lipogenic cancer cell phenotype via HIF1α-dependent and -independent pathways. Oncotarget. 2015;6(4):1920–41.
Article
PubMed
Google Scholar