Maxfield FR. Plasma membrane microdomains. Curr Opin Cell Biol. 2002;14(4):483–7.
Article
PubMed
CAS
Google Scholar
Mukherjee S, Maxfield FR. Membrane domains. Annu Rev Cell Dev Biol. 2004;20:839–66. https://doi.org/10.1146/annurev.cellbio.20.010403.095451.
Article
PubMed
CAS
Google Scholar
Pomorski T, Hrafnsdottir S, Devaux PF, van Meer G. Lipid distribution and transport across cellular membranes. Semin Cell Dev Biol. 2001;12(2):139–48. https://doi.org/10.1006/scdb.2000.0231.
Article
PubMed
CAS
Google Scholar
van Meer G. Membranes in motion. EMBO Rep. 2010;11(5):331–3. https://doi.org/10.1038/embor.2010.60.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24. https://doi.org/10.1038/nrm2330.
Article
PubMed
PubMed Central
CAS
Google Scholar
Holthuis JC, Menon AK. Lipid landscapes and pipelines in membrane homeostasis. Nature. 2014;510(7503):48–57. https://doi.org/10.1038/nature13474.
Article
PubMed
CAS
Google Scholar
Guo D, Bell EH, Chakravarti A. Lipid metabolism emerges as a promising target for malignant glioma therapy. CNS Oncol. 2013;2(3):289–99. https://doi.org/10.2217/cns.13.20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77. https://doi.org/10.1038/nrc2222.
Article
PubMed
CAS
Google Scholar
Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R. Lipolysis: pathway under construction. Curr Opin Lipidol. 2005;16(3):333–40.
Article
PubMed
CAS
Google Scholar
Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517(7534):302–10. https://doi.org/10.1038/nature14190.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–72. https://doi.org/10.1016/j.cell.2015.01.036.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006;124(1):35–46. https://doi.org/10.1016/j.cell.2005.12.022.
Article
PubMed
CAS
Google Scholar
Schwartz MW, Seeley RJ, Tschop MH, Woods SC, Morton GJ, Myers MG, et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature. 2013;503(7474):59–66. https://doi.org/10.1038/nature12709.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1–2):20–44. https://doi.org/10.1016/j.cell.2013.12.012.
Article
PubMed
PubMed Central
CAS
Google Scholar
Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510(7503):84–91. https://doi.org/10.1038/nature13478.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332(6037):1519–23. https://doi.org/10.1126/science.1204265.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abramson HN. The lipogenesis pathway as a cancer target. J Med Chem. 2011;54(16):5615–38. https://doi.org/10.1021/jm2005805.
Article
PubMed
CAS
Google Scholar
Grossi-Paoletti E, Paoletti P, Fumagalli R. Lipids in brain tumors. J Neurosurg. 1971;34(3):454–5. https://doi.org/10.3171/jns.1971.34.3.0454.
Article
PubMed
CAS
Google Scholar
Podo F. Tumour phospholipid metabolism. NMR Biomed. 1999;12(7):413–39.
Article
PubMed
CAS
Google Scholar
Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279(15):2610–23. https://doi.org/10.1111/j.1742-4658.2012.08644.x.
Article
PubMed
CAS
Google Scholar
Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–49. https://doi.org/10.1038/nrc.2016.89.
Article
PubMed
CAS
Google Scholar
Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491(7424):364–73. https://doi.org/10.1038/nature11706.
Article
PubMed
CAS
Google Scholar
Yoon S, Lee MY, Park SW, Moon JS, Koh YK, Ahn YH, et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem. 2007;282(36):26122–31. https://doi.org/10.1074/jbc.M702854200.
Article
PubMed
CAS
Google Scholar
Zhao J, Zhi Z, Wang C, Xing H, Song G, Yu X, et al. Exogenous lipids promote the growth of breast cancer cells via CD36. Oncol Rep. 2017;38(4):2105–15. https://doi.org/10.3892/or.2017.5864.
Article
PubMed
PubMed Central
Google Scholar
Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541(7635):41–5. https://doi.org/10.1038/nature20791.
Article
PubMed
CAS
Google Scholar
Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752. https://doi.org/10.1038/srep14752.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 2011;1(5):442–56. https://doi.org/10.1158/2159-8290.CD-11-0102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geng F, Cheng X, Wu X, Yoo JY, Cheng C, Guo JY, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis. Clin Cancer Res. 2016;22(21):5337–48. https://doi.org/10.1158/1078-0432.CCR-15-2973.
Article
PubMed
PubMed Central
CAS
Google Scholar
Geng F, Guo D. Lipid droplets, potential biomarker and metabolic target in glioblastoma. Intern Med Rev (Washington, DC). 2017. https://doi.org/10.18103/imr.v3i5.443.
Article
Google Scholar
Koizume S, Miyagi Y. Lipid Droplets: a key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17091430.
Article
PubMed
PubMed Central
Google Scholar
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3 K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406. https://doi.org/10.1016/j.cmet.2014.01.019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68(6):1732–40. https://doi.org/10.1158/0008-5472.CAN-07-1999.
Article
PubMed
CAS
Google Scholar
Gaida MM, Mayer C, Dapunt U, Stegmaier S, Schirmacher P, Wabnitz GH, et al. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget. 2016;7(11):12623–32. https://doi.org/10.18632/oncotarget.7206.
Article
PubMed
PubMed Central
Google Scholar
Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal. 2009;2(101):ra82. https://doi.org/10.1126/scisignal.2000446.
Article
PubMed
PubMed Central
Google Scholar
Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab. 2012;23(2):65–72. https://doi.org/10.1016/j.tem.2011.10.004.
Article
PubMed
CAS
Google Scholar
Shao W, Espenshade PJ. Expanding roles for SREBP in metabolism. Cell Metab. 2012;16(4):414–9. https://doi.org/10.1016/j.cmet.2012.09.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, et al. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 2004;64(6):2212–21.
Article
PubMed
CAS
Google Scholar
Yang Y, Morin PJ, Han WF, Chen T, Bornman DM, Gabrielson EW, et al. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res. 2003;282(2):132–7.
Article
PubMed
CAS
Google Scholar
Bao J, Zhu L, Zhu Q, Su J, Liu M, Huang W. SREBP-1 is an independent prognostic marker and promotes invasion and migration in breast cancer. Oncol Lett. 2016;12(4):2409–16. https://doi.org/10.3892/ol.2016.4988.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang WC, Li X, Liu J, Lin J, Chung LW. Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res. 2012;10(1):133–42. https://doi.org/10.1158/1541-7786.MCR-11-0206.
Article
PubMed
CAS
Google Scholar
Yin F, Sharen G, Yuan F, Peng Y, Chen R, Zhou X, et al. TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway. Oncogenesis. 2017;6(6):e347. https://doi.org/10.1038/oncsis.2017.49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun Y, He W, Luo M, Zhou Y, Chang G, Ren W, et al. SREBP1 regulates tumorigenesis and prognosis of pancreatic cancer through targeting lipid metabolism. Tumour Biol. 2015;36(6):4133–41. https://doi.org/10.1007/s13277-015-3047-5.
Article
PubMed
CAS
Google Scholar
Li C, Yang W, Zhang J, Zheng X, Yao Y, Tu K, et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci. 2014;15(5):7124–38. https://doi.org/10.3390/ijms15057124.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 2011;147(4):840–52. https://doi.org/10.1016/j.cell.2011.09.045.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci. 2015;36(6):406–16. https://doi.org/10.1016/j.tips.2015.04.010.
Article
PubMed
CAS
Google Scholar
Muller-Wieland D, Knebel B, Haas J, Kotzka J. SREBP-1 and fatty liver. Clinical relevance for diabetes, obesity, dyslipidemia and atherosclerosis. Herz. 2012;37(3):273–8. https://doi.org/10.1007/s00059-012-3608-y.
Article
PubMed
CAS
Google Scholar
Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol. 2017;24(9):1161–80. https://doi.org/10.1016/j.chembiol.2017.08.028.
Article
PubMed
CAS
PubMed Central
Google Scholar
Min HY, Lee HY. Oncogene-driven metabolic alterations in cancer. Biomol Ther (Seoul). 2017. https://doi.org/10.4062/biomolther.2017.211.
Article
Google Scholar
Gopal K, Grossi E, Paoletti P, Usardi M. Lipid composition of human intracranial tumors: a biochemical study. Acta Neurochir (Wien). 1963;11:333–47.
Article
CAS
Google Scholar
Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61. https://doi.org/10.1016/j.cmet.2013.05.017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology—divergent pathophysiology. Nat Rev Endocrinol. 2017. https://doi.org/10.1038/nrendo.2017.91.
Article
PubMed
Google Scholar
Schlosser HA, Drebber U, Urbanski A, Haase S, Baltin C, Berlth F, et al. Glucose transporters 1, 3, 6, and 10 are expressed in gastric cancer and glucose transporter 3 is associated with UICC stage and survival. Gastric Cancer. 2017;20(1):83–91. https://doi.org/10.1007/s10120-015-0577-x.
Article
PubMed
CAS
Google Scholar
Sharen G, Peng Y, Cheng H, Liu Y, Shi Y, Zhao J. Prognostic value of GLUT-1 expression in pancreatic cancer: results from 538 patients. Oncotarget. 2017;8(12):19760–7. https://doi.org/10.18632/oncotarget.15035.
Article
PubMed
PubMed Central
Google Scholar
Sun HW, Yu XJ, Wu WC, Chen J, Shi M, Zheng L, et al. GLUT1 and ASCT2 as predictors for prognosis of hepatocellular carcinoma. PLoS ONE. 2016;11(12):e0168907. https://doi.org/10.1371/journal.pone.0168907.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng C, Ru P, Geng F, Liu J, Yoo JY, Wu X, et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell. 2015;28(5):569–81. https://doi.org/10.1016/j.ccell.2015.09.021.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ryczko MC, Pawling J, Chen R, Abdel Rahman AM, Yau K, Copeland JK, et al. Metabolic reprogramming by hexosamine biosynthetic and golgi N-glycan branching pathways. Sci Rep. 2016;6:23043. https://doi.org/10.1038/srep23043.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adeva-Andany MM, Perez-Felpete N, Fernandez-Fernandez C, Donapetry-Garcia C, Pazos-Garcia C. Liver glucose metabolism in humans. Biosci Rep. 2016. https://doi.org/10.1042/bsr20160385.
Article
PubMed
PubMed Central
Google Scholar
Guo D. SCAP links glucose to lipid metabolism in cancer cells. Mol Cell Oncol. 2016. https://doi.org/10.1080/23723556.2015.1132120.
Article
PubMed
PubMed Central
Google Scholar
Dang CV, Le A, Gao P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res. 2009;15(21):6479–83. https://doi.org/10.1158/1078-0432.CCR-09-0889.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barger JF, Plas DR. Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis. Endocr Relat Cancer. 2010;17(4):R287–304. https://doi.org/10.1677/ERC-10-0106.
Article
PubMed
CAS
Google Scholar
Dang CV. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Cold Spring Harb Symp Quant Biol. 2011;76:369–74. https://doi.org/10.1101/sqb.2011.76.011296.
Article
PubMed
CAS
Google Scholar
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104(49):19345–50. https://doi.org/10.1073/pnas.0709747104.
Article
PubMed
PubMed Central
Google Scholar
Bergstrom J, Furst P, Noree LO, Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974;36(6):693–7.
Article
PubMed
CAS
Google Scholar
Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7. https://doi.org/10.1093/nar/gks1065.
Article
PubMed
CAS
Google Scholar
DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29(3):313–24. https://doi.org/10.1038/onc.2009.358.
Article
PubMed
CAS
Google Scholar
Bhutia YD, Babu E, Ramachandran S, Ganapathy V. Amino Acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res. 2015;75(9):1782–8. https://doi.org/10.1158/0008-5472.CAN-14-3745.
Article
PubMed
CAS
Google Scholar
Erickson JW, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget. 2010;1(8):734–40. https://doi.org/10.18632/oncotarget.208.
Article
PubMed
PubMed Central
Google Scholar
Wise DR, Ward PS, Shay JE, Cross JR, Gruber JJ, Sachdeva UM, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA. 2011;108(49):19611–6. https://doi.org/10.1073/pnas.1117773108.
Article
PubMed
PubMed Central
Google Scholar
Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012;481(7381):380–4. https://doi.org/10.1038/nature10602.
Article
CAS
Google Scholar
Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;481(7381):385–8. https://doi.org/10.1038/nature10642.
Article
CAS
Google Scholar
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15(1):110–21. https://doi.org/10.1016/j.cmet.2011.12.009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, et al. Acetate dependence of tumors. Cell. 2014;159(7):1591–602. https://doi.org/10.1016/j.cell.2014.11.020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159(7):1603–14. https://doi.org/10.1016/j.cell.2014.11.025.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27(1):57–71. https://doi.org/10.1016/j.ccell.2014.12.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peck B, Schulze A. Lipid desaturation - the next step in targeting lipogenesis in cancer? FEBS J. 2016;283(15):2767–78. https://doi.org/10.1111/febs.13681.
Article
PubMed
CAS
Google Scholar
Goldstein JL, Brown MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009;29(4):431–8. https://doi.org/10.1161/ATVBAHA.108.179564.
Article
PubMed
PubMed Central
CAS
Google Scholar
Di Vizio D, Adam RM, Kim J, Kim R, Sotgia F, Williams T, et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle. 2008;7(14):2257–67. https://doi.org/10.4161/cc.7.14.6475.
Article
PubMed
CAS
Google Scholar
Cai Y, Wang J, Zhang L, Wu D, Yu D, Tian X, et al. Expressions of fatty acid synthase and HER2 are correlated with poor prognosis of ovarian cancer. Med Oncol. 2015;32(1):391. https://doi.org/10.1007/s12032-014-0391-z.
Article
PubMed
CAS
Google Scholar
Long QQ, Yi YX, Qiu J, Xu CJ, Huang PL. Fatty acid synthase (FASN) levels in serum of colorectal cancer patients: correlation with clinical outcomes. Tumour Biol. 2014;35(4):3855–9. https://doi.org/10.1007/s13277-013-1510-8.
Article
PubMed
CAS
Google Scholar
Witkiewicz AK, Nguyen KH, Dasgupta A, Kennedy EP, Yeo CJ, Lisanti MP, et al. Co-expression of fatty acid synthase and caveolin-1 in pancreatic ductal adenocarcinoma: implications for tumor progression and clinical outcome. Cell Cycle. 2008;7(19):3021–5. https://doi.org/10.4161/cc.7.19.6719.
Article
PubMed
CAS
Google Scholar
Walter K, Hong SM, Nyhan S, Canto M, Fedarko N, Klein A, et al. Serum fatty acid synthase as a marker of pancreatic neoplasia. Cancer Epidemiol Biomarkers Prev. 2009;18(9):2380–5. https://doi.org/10.1158/1055-9965.EPI-09-0144.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nohturfft A, Zhang SC. Coordination of lipid metabolism in membrane biogenesis. Annu Rev Cell Dev Biol. 2009;25:539–66. https://doi.org/10.1146/annurev.cellbio.24.110707.175344.
Article
PubMed
CAS
Google Scholar
Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL. Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest. 1997;99(5):846–54. https://doi.org/10.1172/JCI119248.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest. 1997;99(5):838–45. https://doi.org/10.1172/JCI119247.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994;77(1):53–62.
Article
PubMed
CAS
Google Scholar
Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993;75(1):187–97.
Article
PubMed
CAS
Google Scholar
Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–31. https://doi.org/10.1172/JCI15593.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci USA. 2003;100(21):12027–32. https://doi.org/10.1073/pnas.1534923100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Horton JD, Shimomura I, Ikemoto S, Bashmakov Y, Hammer RE. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem. 2003;278(38):36652–60. https://doi.org/10.1074/jbc.M306540200.
Article
PubMed
CAS
Google Scholar
Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics. 1995;25(3):667–73.
Article
PubMed
CAS
Google Scholar
Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci USA. 1993;90(24):11603–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimano H, Shimomura I, Hammer RE, Herz J, Goldstein JL, Brown MS, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest. 1997;100(8):2115–24. https://doi.org/10.1172/JCI119746.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee PC, Sever N, Debose-Boyd RA. Isolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2. J Biol Chem. 2005;280(26):25242–9. https://doi.org/10.1074/jbc.M502989200.
Article
PubMed
CAS
Google Scholar
Sun LP, Li L, Goldstein JL, Brown MS. Insig required for sterol-mediated inhibition of Scap/SREBP binding to COPII proteins in vitro. J Biol Chem. 2005;280(28):26483–90. https://doi.org/10.1074/jbc.M504041200.
Article
PubMed
CAS
Google Scholar
Sun LP, Seemann J, Goldstein JL, Brown MS. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: Insig renders sorting signal in Scap inaccessible to COPII proteins. Proc Natl Acad Sci USA. 2007;104(16):6519–26. https://doi.org/10.1073/pnas.0700907104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ. Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell. 2000;102(3):315–23.
Article
PubMed
CAS
Google Scholar
Espenshade PJ, Li WP, Yabe D. Sterols block binding of COPII proteins to SCAP, thereby controlling SCAP sorting in ER. Proc Natl Acad Sci USA. 2002;99(18):11694–9. https://doi.org/10.1073/pnas.182412799.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002;110(4):489–500.
Article
PubMed
CAS
Google Scholar
Adams CM, Goldstein JL, Brown MS. Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles. Proc Natl Acad Sci USA. 2003;100(19):10647–52. https://doi.org/10.1073/pnas.1534833100.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J Biol Chem. 2004;279(50):52772–80. https://doi.org/10.1074/jbc.M410302200.
Article
PubMed
CAS
Google Scholar
Ru P, Hu P, Geng F, Mo X, Cheng C, Yoo JY, et al. Feedback loop regulation of SCAP/SREBP-1 by miR-29 modulates EGFR signaling-driven glioblastoma growth. Cell Rep. 2016;16(6):1527–35. https://doi.org/10.1016/j.celrep.2016.07.017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ru P, Guo D. microRNA-29 mediates a novel negative feedback loop to regulate SCAP/SREBP-1 and lipid metabolism. RNA Dis. 2017. https://doi.org/10.14800/rd.1525.
Article
PubMed
PubMed Central
Google Scholar
Guo D. SCAP links glucose to lipid metabolism in cancer cells. Mol Cell Oncol. 2016. https://doi.org/10.1080/23723556.2015.1132120.
Article
PubMed
PubMed Central
Google Scholar
Shao W, Espenshade PJ. Sugar makes fat by talking to SCAP. Cancer Cell. 2015;28(5):548–9. https://doi.org/10.1016/j.ccell.2015.10.011.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng C, Guo JY, Geng F, Wu X, Cheng X, Li Q, et al. Analysis of SCAP N-glycosylation and trafficking in human cells. J Vis Exp. 2016. https://doi.org/10.3791/54709.
Article
PubMed
PubMed Central
Google Scholar
Guo D, Hildebrandt IJ, Prins RM, Soto H, Mazzotta MM, Dang J, et al. The AMPK agonist AICAR inhibits the growth of EGFRvIII-expressing glioblastomas by inhibiting lipogenesis. Proc Natl Acad Sci USA. 2009;106(31):12932–7. https://doi.org/10.1073/pnas.0906606106.
Article
PubMed
PubMed Central
Google Scholar
Ru P, Williams TM, Chakravarti A, Guo D. Tumor metabolism of malignant gliomas. Cancers (Basel). 2013;5(4):1469–84. https://doi.org/10.3390/cancers5041469.
Article
CAS
Google Scholar
Guo D, Bell EH, Mischel P, Chakravarti A. Targeting SREBP-1-driven lipid metabolism to treat cancer. Curr Pharm Des. 2014;20(15):2619–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. https://doi.org/10.1056/NEJMra0708126.
Article
PubMed
CAS
Google Scholar
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. https://doi.org/10.1016/S1470-2045(09)70025-7.
Article
PubMed
CAS
Google Scholar
Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21(21):2683–710.
Article
PubMed
CAS
Google Scholar
Paleologos NA, Merrell RT. Anaplastic glioma. Curr Treat Options Neurol. 2012;14(4):381–90. https://doi.org/10.1007/s11940-012-0177-6.
Article
PubMed
Google Scholar
Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet. 2012;379(9830):1984–96. https://doi.org/10.1016/S0140-6736(11)61346-9.
Article
PubMed
Google Scholar
Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, et al. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem. 1997;272(5):2927–35.
Article
PubMed
CAS
Google Scholar
Yoshimoto K, Dang J, Zhu S, Nathanson D, Huang T, Dumont R, et al. Development of a real-time RT-PCR assay for detecting EGFRvIII in glioblastoma samples. Clin Cancer Res. 2008;14(2):488–93. https://doi.org/10.1158/1078-0432.CCR-07-1966.
Article
PubMed
CAS
Google Scholar
Du X, Kristiana I, Wong J, Brown AJ. Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol Biol Cell. 2006;17(6):2735–45. https://doi.org/10.1091/mbc.E05-11-1094.
Article
PubMed
PubMed Central
CAS
Google Scholar
Porstmann T, Griffiths B, Chung YL, Delpuech O, Griffiths JR, Downward J, et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene. 2005;24(43):6465–81. https://doi.org/10.1038/sj.onc.1208802.
Article
PubMed
CAS
Google Scholar
Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8(3):224–36. https://doi.org/10.1016/j.cmet.2008.07.007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83. https://doi.org/10.1016/j.molcel.2010.06.022.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 2011;14(1):21–32. https://doi.org/10.1016/j.cmet.2011.06.002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408–20. https://doi.org/10.1016/j.cell.2011.06.034.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ricoult SJ, Yecies JL, Ben-Sahra I, Manning BD. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene. 2015. https://doi.org/10.1038/onc.2015.179.
Article
PubMed
PubMed Central
Google Scholar
Williams KJ, Argus JP, Zhu Y, Wilks MQ, Marbois BN, York AG, et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 2013;73(9):2850–62. https://doi.org/10.1158/0008-5472.CAN-13-0382-T.
Article
PubMed
PubMed Central
CAS
Google Scholar
von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res. 2013;19(9):2368–80. https://doi.org/10.1158/1078-0432.CCR-12-3249.
Article
CAS
Google Scholar
Li N, Zhou ZS, Shen Y, Xu J, Miao HH, Xiong Y, et al. Inhibition of the sterol regulatory element-binding protein pathway suppresses hepatocellular carcinoma by repressing inflammation in mice. Hepatology. 2017;65(6):1936–47. https://doi.org/10.1002/hep.29018.
Article
PubMed
CAS
Google Scholar
Kamisuki S, Mao Q, Abu-Elheiga L, Gu Z, Kugimiya A, Kwon Y, et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem Biol. 2009;16(8):882–92. https://doi.org/10.1016/j.chembiol.2009.07.007.
Article
PubMed
CAS
Google Scholar
Li X, Chen YT, Hu P, Huang WC. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol Cancer Ther. 2014;13(4):855–66. https://doi.org/10.1158/1535-7163.MCT-13-0797.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li X, Wu JB, Chung LW, Huang WC. Anti-cancer efficacy of SREBP inhibitor, alone or in combination with docetaxel, in prostate cancer harboring p53 mutations. Oncotarget. 2015;6(38):41018–32. https://doi.org/10.18632/oncotarget.5879.
Article
PubMed
PubMed Central
Google Scholar
Krol SK, Kielbus M, Rivero-Muller A, Stepulak A. Comprehensive review on betulin as a potent anticancer agent. Biomed Res Int. 2015;2015:584189. https://doi.org/10.1155/2015/584189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gholkar AA, Cheung K, Williams KJ, Lo YC, Hamideh SA, Nnebe C, et al. Fatostatin inhibits cancer cell proliferation by affecting mitotic microtubule spindle assembly and cell division. J Biol Chem. 2016;291(33):17001–8. https://doi.org/10.1074/jbc.C116.737346.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shao W, Machamer CE, Espenshade PJ. Fatostatin blocks ER exit of SCAP but inhibits cell growth in a SCAP-independent manner. J Lipid Res. 2016;57(8):1564–73. https://doi.org/10.1194/jlr.M069583.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miyata S, Inoue J, Shimizu M, Sato R. Xanthohumol improves diet-induced obesity and fatty liver by suppressing sterol regulatory element-binding protein (SREBP) activation. J Biol Chem. 2015;290(33):20565–79. https://doi.org/10.1074/jbc.M115.656975.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soica C, Dehelean C, Danciu C, Wang HM, Wenz G, Ambrus R, et al. Betulin complex in gamma-cyclodextrin derivatives: properties and antineoplasic activities in in vitro and in vivo tumor models. Int J Mol Sci. 2012;13(11):14992–5011. https://doi.org/10.3390/ijms131114992.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shikata Y, Yoshimaru T, Komatsu M, Katoh H, Sato R, Kanagaki S, et al. Protein kinase A inhibition facilitates the antitumor activity of xanthohumol, a valosin-containing protein inhibitor. Cancer Sci. 2017;108(4):785–94. https://doi.org/10.1111/cas.13175.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dokduang H, Yongvanit P, Namwat N, Pairojkul C, Sangkhamanon S, Yageta MS, et al. Xanthohumol inhibits STAT3 activation pathway leading to growth suppression and apoptosis induction in human cholangiocarcinoma cells. Oncol Rep. 2016;35(4):2065–72. https://doi.org/10.3892/or.2016.4584.
Article
PubMed
CAS
Google Scholar
Jiang W, Zhao S, Xu L, Lu Y, Lu Z, Chen C, et al. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed Pharmacother. 2015;73:40–7. https://doi.org/10.1016/j.biopha.2015.05.020.
Article
PubMed
CAS
Google Scholar
Monteiro R, Calhau C, Silva AO, Pinheiro-Silva S, Guerreiro S, Gartner F, et al. Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem. 2008;104(5):1699–707. https://doi.org/10.1002/jcb.21738.
Article
PubMed
CAS
Google Scholar
Li X, Wu JB, Li Q, Shigemura K, Chung LW, Huang WC. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7(11):12869–84. https://doi.org/10.18632/oncotarget.7331.
Article
PubMed
PubMed Central
Google Scholar
Vallianou NG, Kostantinou A, Kougias M, Kazazis C. Statins and cancer. Anticancer Agents Med Chem. 2014;14(5):706–12.
Article
PubMed
CAS
Google Scholar
Osmak M. Statins and cancer: current and future prospects. Cancer Lett. 2012;324(1):1–12. https://doi.org/10.1016/j.canlet.2012.04.011.
Article
PubMed
CAS
Google Scholar
Zhang J, Yang Z, Xie L, Xu L, Xu D, Liu X. Statins, autophagy and cancer metastasis. Int J Biochem Cell Biol. 2013;45(3):745–52. https://doi.org/10.1016/j.biocel.2012.11.001.
Article
PubMed
CAS
Google Scholar
Bathaie SZ, Ashrafi M, Azizian M, Tamanoi F. Mevalonate pathway and human cancers. Curr Mol Pharmacol. 2017;10(2):77–85. https://doi.org/10.2174/1874467209666160112123205.
Article
PubMed
CAS
Google Scholar
Nayan M, Punjani N, Juurlink DN, Finelli A, Austin PC, Kulkarni GS, et al. Statin use and kidney cancer survival outcomes: a systematic review and meta-analysis. Cancer Treat Rev. 2017;52:105–16. https://doi.org/10.1016/j.ctrv.2016.11.009.
Article
PubMed
CAS
Google Scholar
Pandyra AA, Mullen PJ, Goard CA, Ericson E, Sharma P, Kalkat M, et al. Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death. Oncotarget. 2015;6(29):26909–21. https://doi.org/10.18632/oncotarget.4817.
Article
PubMed
PubMed Central
Google Scholar
Nayan M, Finelli A, Jewett MA, Juurlink DN, Austin PC, Kulkarni GS, et al. Statin use and kidney cancer outcomes a propensity score analysis. Urol Oncol. 2016;34(11):487-e1–6. https://doi.org/10.1016/j.urolonc.2016.06.007.
Article
CAS
Google Scholar
Pandyra A, Penn LZ. Targeting tumor cell metabolism via the mevalonate pathway: two hits are better than one. Mol Cell Oncol. 2014;1(4):e969133. https://doi.org/10.4161/23723548.2014.969133.
Article
PubMed
PubMed Central
Google Scholar
Pandyra A, Mullen PJ, Kalkat M, Yu R, Pong JT, Li Z, et al. Immediate utility of two approved agents to target both the metabolic mevalonate pathway and its restorative feedback loop. Cancer Res. 2014;74(17):4772–82. https://doi.org/10.1158/0008-5472.CAN-14-0130.
Article
PubMed
CAS
Google Scholar
Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F, Wellstein A, et al. The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget. 2012;3(10):1220–35. https://doi.org/10.18632/oncotarget.714.
Article
PubMed
PubMed Central
Google Scholar
Convertini P, Menga A, Andria G, Scala I, Santarsiero A, Castiglione Morelli MA, et al. The contribution of the citrate pathway to oxidative stress in Down syndrome. Immunology. 2016;149(4):423–31. https://doi.org/10.1111/imm.12659.
Article
PubMed
PubMed Central
CAS
Google Scholar
Infantino V, Iacobazzi V, De Santis F, Mastrapasqua M, Palmieri F. Transcription of the mitochondrial citrate carrier gene: role of SREBP-1, upregulation by insulin and downregulation by PUFA. Biochem Biophys Res Commun. 2007;356(1):249–54. https://doi.org/10.1016/j.bbrc.2007.02.114.
Article
PubMed
CAS
Google Scholar
Kolukula VK, Sahu G, Wellstein A, Rodriguez OC, Preet A, Iacobazzi V, et al. SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker. Oncotarget. 2014;5(5):1212–25. https://doi.org/10.18632/oncotarget.1831.
Article
PubMed
PubMed Central
Google Scholar
Assmann N, O’Brien KL, Donnelly RP, Dyck L, Zaiatz-Bittencourt V, Loftus RM, et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat Immunol. 2017;18(11):1197–206. https://doi.org/10.1038/ni.3838.
Article
PubMed
CAS
Google Scholar
Zhao S, Torres A, Henry RA, Trefely S, Wallace M, Lee JV, et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep. 2016;17(4):1037–52. https://doi.org/10.1016/j.celrep.2016.09.069.
Article
PubMed
PubMed Central
CAS
Google Scholar
He Y, Gao M, Cao Y, Tang H, Liu S, Tao Y. Nuclear localization of metabolic enzymes in immunity and metastasis. Biochim Biophys Acta. 2017;1868(2):359–71. https://doi.org/10.1016/j.bbcan.2017.07.002.
Article
PubMed
CAS
Google Scholar
Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72(15):3709–14. https://doi.org/10.1158/0008-5472.CAN-11-4112.
Article
PubMed
CAS
Google Scholar
Moon YA, Lee JJ, Park SW, Ahn YH, Kim KS. The roles of sterol regulatory element-binding proteins in the transactivation of the rat ATP citrate-lyase promoter. J Biol Chem. 2000;275(39):30280–6. https://doi.org/10.1074/jbc.M001066200.
Article
PubMed
CAS
Google Scholar
Sato R, Okamoto A, Inoue J, Miyamoto W, Sakai Y, Emoto N, et al. Transcriptional regulation of the ATP citrate-lyase gene by sterol regulatory element-binding proteins. J Biol Chem. 2000;275(17):12497–502.
Article
PubMed
CAS
Google Scholar
Amemiya-Kudo M, Shimano H, Hasty AH, Yahagi N, Yoshikawa T, Matsuzaka T, et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J Lipid Res. 2002;43(8):1220–35.
PubMed
CAS
Google Scholar
Khwairakpam AD, Shyamananda MS, Sailo BL, Rathnakaram SR, Padmavathi G, Kotoky J, et al. ATP citrate lyase (ACLY): a promising target for cancer prevention and treatment. Curr Drug Targets. 2015;16(2):156–63.
Article
PubMed
CAS
Google Scholar
Osugi J, Yamaura T, Muto S, Okabe N, Matsumura Y, Hoshino M, et al. Prognostic impact of the combination of glucose transporter 1 and ATP citrate lyase in node-negative patients with non-small lung cancer. Lung Cancer. 2015;88(3):310–8. https://doi.org/10.1016/j.lungcan.2015.03.004.
Article
PubMed
Google Scholar
Csanadi A, Kayser C, Donauer M, Gumpp V, Aumann K, Rawluk J, et al. Prognostic value of malic enzyme and ATP-citrate lyase in non-small cell lung cancer of the young and the elderly. PLoS ONE. 2015;10(5):e0126357. https://doi.org/10.1371/journal.pone.0126357.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell. 2005;8(4):311–21. https://doi.org/10.1016/j.ccr.2005.09.008.
Article
PubMed
CAS
Google Scholar
Lee JH, Jang H, Lee SM, Lee JE, Choi J, Kim TW, et al. ATP-citrate lyase regulates cellular senescence via an AMPK- and p53-dependent pathway. FEBS J. 2015;282(2):361–71. https://doi.org/10.1111/febs.13139.
Article
PubMed
CAS
Google Scholar
Hanai JI, Doro N, Seth P, Sukhatme VP. ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death Dis. 2013;4:e696. https://doi.org/10.1038/cddis.2013.215.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB. ATP citrate lyase is an important component of cell growth and transformation. Oncogene. 2005;24(41):6314–22. https://doi.org/10.1038/sj.onc.1208773.
Article
PubMed
CAS
Google Scholar
Watkins PA, Maiguel D, Jia Z, Pevsner J. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res. 2007;48(12):2736–50. https://doi.org/10.1194/jlr.M700378-JLR200.
Article
PubMed
CAS
Google Scholar
Xu H, Luo J, Ma G, Zhang X, Yao D, Li M, et al. Acyl-CoA synthetase short-chain family member 2 (ACSS2) is regulated by SREBP-1 and plays a role in fatty acid synthesis in caprine mammary epithelial cells. J Cell Physiol. 2018;233(2):1005–16. https://doi.org/10.1002/jcp.25954.
Article
PubMed
CAS
Google Scholar
Sun L, Kong Y, Cao M, Zhou H, Li H, Cui Y, et al. Decreased expression of acetyl-CoA synthase 2 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Cancer Sci. 2017;108(7):1338–46. https://doi.org/10.1111/cas.13252.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao X, Lin SH, Ren F, Li JT, Chen JJ, Yao CB, et al. Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nat Commun. 2016;7:11960. https://doi.org/10.1038/ncomms11960.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu T, Cui L, Liu C, Wang G, Wu T, Huang Y. Expression of acetyl coenzyme A synthetase 2 in colorectal cancer and its biological role. Zhonghua Wei Chang Wai Ke Za Zhi. 2017;20(10):1174–9.
PubMed
Google Scholar
Lakhter AJ, Hamilton J, Konger RL, Brustovetsky N, Broxmeyer HE, Naidu SR. Glucose-independent acetate metabolism promotes melanoma cell survival and tumor growth. J Biol Chem. 2016;291(42):21869–79. https://doi.org/10.1074/jbc.M115.712166.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yun M, Bang SH, Kim JW, Park JY, Kim KS, Lee JD. The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma. J Nucl Med. 2009;50(8):1222–8. https://doi.org/10.2967/jnumed.109.062703.
Article
PubMed
CAS
Google Scholar
Yoshii Y, Waki A, Furukawa T, Kiyono Y, Mori T, Yoshii H, et al. Tumor uptake of radiolabeled acetate reflects the expression of cytosolic acetyl-CoA synthetase: implications for the mechanism of acetate PET. Nucl Med Biol. 2009;36(7):771–7. https://doi.org/10.1016/j.nucmedbio.2009.05.006.
Article
PubMed
CAS
Google Scholar
Li X, Yu W, Qian X, Xia Y, Zheng Y, Lee JH, et al. Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell. 2017;66(5):684–97. https://doi.org/10.1016/j.molcel.2017.04.026.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li X, Qian X, Lu Z. Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy. 2017;13(10):1790–1. https://doi.org/10.1080/15548627.2017.1349581.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang C, Rajput S, Watabe K, Liao DF, Cao D. Acetyl-CoA carboxylase-a as a novel target for cancer therapy. Front Biosci (Schol Ed). 2010;2:515–26.
Google Scholar
Zu X, Zhong J, Luo D, Tan J, Zhang Q, Wu Y, et al. Chemical genetics of acetyl-CoA carboxylases. Molecules. 2013;18(2):1704–19. https://doi.org/10.3390/molecules18021704.
Article
PubMed
CAS
Google Scholar
Su YW, Lin YH, Pai MH, Lo AC, Lee YC, Fang IC, et al. Association between phosphorylated AMP-activated protein kinase and acetyl-CoA carboxylase expression and outcome in patients with squamous cell carcinoma of the head and neck. PLoS ONE. 2014;9(4):e96183. https://doi.org/10.1371/journal.pone.0096183.
Article
PubMed
PubMed Central
Google Scholar
Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, et al. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res. 2000;60(2):213–8.
PubMed
CAS
Google Scholar
Guseva NV, Rokhlin OW, Glover RA, Cohen MB. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status. Cancer Biol Ther. 2011;12(1):80–5. https://doi.org/10.4161/cbt.12.1.15721.
Article
PubMed
CAS
Google Scholar
Li S, Qiu L, Wu B, Shen H, Zhu J, Zhou L, et al. TOFA suppresses ovarian cancer cell growth in vitro and in vivo. Mol Med Rep. 2013;8(2):373–8. https://doi.org/10.3892/mmr.2013.1505.
Article
PubMed
Google Scholar
Tan W, Zhong Z, Wang S, Suo Z, Yang X, Hu X, et al. Berberine regulated lipid metabolism in the presence of C75, compound C, and TOFA in breast cancer cell line MCF-7. Evid Based Complement Altern Med. 2015;2015:396035. https://doi.org/10.1155/2015/396035.
Article
Google Scholar
Wang C, Xu C, Sun M, Luo D, Liao DF, Cao D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem Biophys Res Commun. 2009;385(3):302–6. https://doi.org/10.1016/j.bbrc.2009.05.045.
Article
PubMed
PubMed Central
CAS
Google Scholar
Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 2016;22(10):1108–19. https://doi.org/10.1038/nm.4181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo J, Hong Y, Lu Y, Qiu S, Chaganty BK, Zhang L, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab. Cancer Lett. 2017;384:39–49. https://doi.org/10.1016/j.canlet.2016.09.020.
Article
PubMed
CAS
Google Scholar
Jones JE, Esler WP, Patel R, Lanba A, Vera NB, Pfefferkorn JA, et al. Inhibition of acetyl-CoA carboxylase 1 (ACC1) and 2 (ACC2) reduces proliferation and de novo lipogenesis of EGFRvIII human glioblastoma cells. PLoS ONE. 2017;12(1):e0169566. https://doi.org/10.1371/journal.pone.0169566.
Article
PubMed
PubMed Central
Google Scholar
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets. 2017. https://doi.org/10.1080/14728222.2017.1381087.
Article
PubMed
Google Scholar
Menendez JA, Vellon L, Mehmi I, Oza BP, Ropero S, Colomer R, et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci USA. 2004;101(29):10715–20. https://doi.org/10.1073/pnas.0403390101.
Article
PubMed
PubMed Central
CAS
Google Scholar
Visca P, Sebastiani V, Botti C, Diodoro MG, Lasagni RP, Romagnoli F, et al. Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma. Anticancer Res. 2004;24(6):4169–73.
PubMed
CAS
Google Scholar
Merino Salvador M, Gomez de Cedron M, Merino Rubio J, Falagan Martinez S, Sanchez Martinez R, Casado E, et al. Lipid metabolism and lung cancer. Crit Rev Oncol Hematol. 2017;112:31–40. https://doi.org/10.1016/j.critrevonc.2017.02.001.
Article
PubMed
Google Scholar
Jones SF, Infante JR. Molecular pathways: fatty acid synthase. Clin Cancer Res. 2015;21(24):5434–8. https://doi.org/10.1158/1078-0432.CCR-15-0126.
Article
PubMed
CAS
Google Scholar
Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 2004;64(6):2070–5.
Article
PubMed
CAS
Google Scholar
Carvalho MA, Zecchin KG, Seguin F, Bastos DC, Agostini M, Rangel AL, et al. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Int J Cancer. 2008;123(11):2557–65. https://doi.org/10.1002/ijc.23835.
Article
PubMed
CAS
Google Scholar
Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA. 1994;91(14):6379–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 1996;56(6):1189–93.
PubMed
CAS
Google Scholar
Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res. 1996;56(12):2745–7.
PubMed
CAS
Google Scholar
Li JN, Gorospe M, Chrest FJ, Kumaravel TS, Evans MK, Han WF, et al. Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res. 2001;61(4):1493–9.
PubMed
CAS
Google Scholar
Zhou W, Simpson PJ, McFadden JM, Townsend CA, Medghalchi SM, Vadlamudi A, et al. Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. Cancer Res. 2003;63(21):7330–7.
PubMed
CAS
Google Scholar
Menendez JA, Vellon L, Colomer R, Lupu R. Pharmacological and small interference RNA-mediated inhibition of breast cancer-associated fatty acid synthase (oncogenic antigen-519) synergistically enhances Taxol (paclitaxel)-induced cytotoxicity. Int J Cancer. 2005;115(1):19–35. https://doi.org/10.1002/ijc.20754.
Article
PubMed
CAS
Google Scholar
Gabrielson EW, Pinn ML, Testa JR, Kuhajda FP. Increased fatty acid synthase is a therapeutic target in mesothelioma. Clin Cancer Res. 2001;7(1):153–7.
PubMed
CAS
Google Scholar
Horiguchi A, Asano T, Asano T, Ito K, Sumitomo M, Hayakawa M. Pharmacological inhibitor of fatty acid synthase suppresses growth and invasiveness of renal cancer cells. J Urol. 2008;180(2):729–36. https://doi.org/10.1016/j.juro.2008.03.186.
Article
PubMed
CAS
Google Scholar
Relat J, Blancafort A, Oliveras G, Cufi S, Haro D, Marrero PF, et al. Different fatty acid metabolism effects of (−)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer. 2012;12:280. https://doi.org/10.1186/1471-2407-12-280.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen HW, Chang YF, Chuang HY, Tai WT, Hwang JJ. Targeted therapy with fatty acid synthase inhibitors in a human prostate carcinoma LNCaP/tk-luc-bearing animal model. Prostate Cancer Prostatic Dis. 2012;15(3):260–4. https://doi.org/10.1038/pcan.2012.15.
Article
PubMed
CAS
Google Scholar
Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010;6(4):551–62. https://doi.org/10.2217/fon.10.11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mullen GE, Yet L. Progress in the development of fatty acid synthase inhibitors as anticancer targets. Bioorg Med Chem Lett. 2015;25(20):4363–9. https://doi.org/10.1016/j.bmcl.2015.08.087.
Article
PubMed
CAS
Google Scholar
Enoch HG, Catala A, Strittmatter P. Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J Biol Chem. 1976;251(16):5095–103.
PubMed
CAS
Google Scholar
Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, et al. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015;524(7564):252–6. https://doi.org/10.1038/nature14549.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ntambi JM, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res. 2004;43(2):91–104.
Article
PubMed
CAS
Google Scholar
Ntambi JM, Miyazaki M, Dobrzyn A. Regulation of stearoyl-CoA desaturase expression. Lipids. 2004;39(11):1061–5.
Article
PubMed
CAS
Google Scholar
Wu X, Zou X, Chang Q, Zhang Y, Li Y, Zhang L, et al. The evolutionary pattern and the regulation of stearoyl-CoA desaturase genes. Biomed Res Int. 2013;2013:856521. https://doi.org/10.1155/2013/856521.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z, Dales NA, Winther MD. Opportunities and challenges in developing stearoyl-coenzyme A desaturase-1 inhibitors as novel therapeutics for human disease. J Med Chem. 2014;57(12):5039–56. https://doi.org/10.1021/jm401516c.
Article
PubMed
CAS
Google Scholar
Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avances C, et al. Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice. Mol Cancer Ther. 2010;9(6):1740–54. https://doi.org/10.1158/1535-7163.MCT-09-1064.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peck B, Schug ZT, Zhang Q, Dankworth B, Jones DT, Smethurst E, et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 2016;4:6. https://doi.org/10.1186/s40170-016-0146-8.
Article
PubMed
PubMed Central
Google Scholar
Yu DC, Bury JP, Tiernan J, Waby JS, Staton CA, Corfe BM. Short-chain fatty acid level and field cancerization show opposing associations with enteroendocrine cell number and neuropilin expression in patients with colorectal adenoma. Mol Cancer. 2011;10:27. https://doi.org/10.1186/1476-4598-10-27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noto A, Raffa S, De Vitis C, Roscilli G, Malpicci D, Coluccia P, et al. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis. 2013;4:e947. https://doi.org/10.1038/cddis.2013.444.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glatz JF, Luiken JJ. From fat to FAT (CD36/SR-B2): understanding the regulation of cellular fatty acid uptake. Biochimie. 2017;136:21–6. https://doi.org/10.1016/j.biochi.2016.12.007.
Article
PubMed
CAS
Google Scholar
Pohl J, Ring A, Korkmaz U, Ehehalt R, Stremmel W. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol Biol Cell. 2005;16(1):24–31. https://doi.org/10.1091/mbc.E04-07-0616.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438(7068):612–21. https://doi.org/10.1038/nature04399.
Article
PubMed
CAS
Google Scholar
Rudling MJ, Angelin B, Peterson CO, Collins VP. Low density lipoprotein receptor activity in human intracranial tumors and its relation to the cholesterol requirement. Cancer Res. 1990;50(3):483–7.
PubMed
CAS
Google Scholar
Walther TC, Farese RV Jr. The life of lipid droplets. Biochim Biophys Acta. 2009;1791(6):459–66. https://doi.org/10.1016/j.bbalip.2008.10.009.
Article
PubMed
CAS
Google Scholar
Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, et al. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet. 2011;7(7):e1002201. https://doi.org/10.1371/journal.pgen.1002201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Karantonis HC, Nomikos T, Demopoulos CA. Triacylglycerol metabolism. Curr Drug Targets. 2009;10(4):302–19.
Article
PubMed
CAS
Google Scholar
Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res. 2011;52(4):657–67. https://doi.org/10.1194/jlr.M013003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tosi MR, Tugnoli V. Cholesteryl esters in malignancy. Clin Chim Acta. 2005;359(1–2):27–45. https://doi.org/10.1016/j.cccn.2005.04.003.
Article
PubMed
CAS
Google Scholar
Tugnoli V, Tosi MR. Cholesteryl ester detection in a human urothelial carcinoma. Clin Chim Acta. 2005;360(1–2):208–10. https://doi.org/10.1016/j.cccn.2005.05.012.
Article
PubMed
CAS
Google Scholar
Tugnoli V, Tosi MR, Tinti A, Trinchero A, Bottura G, Fini G. Characterization of lipids from human brain tissues by multinuclear magnetic resonance spectroscopy. Biopolymers. 2001;62(6):297–306. https://doi.org/10.1002/bip.10005.
Article
PubMed
CAS
Google Scholar
Tugnoli V, Bottura G, Fini G, Reggiani A, Tinti A, Trinchero A, et al. 1H-NMR and 13C-NMR lipid profiles of human renal tissues. Biopolymers. 2003;72(2):86–95. https://doi.org/10.1002/bip.10299.
Article
PubMed
CAS
Google Scholar
Yates AJ, Thompson DK, Boesel CP, Albrightson C, Hart RW. Lipid composition of human neural tumors. J Lipid Res. 1979;20(4):428–36.
PubMed
CAS
Google Scholar
Ohmoto T, Nishitsuji K, Yoshitani N, Mizuguchi M, Yanagisawa Y, Saito H, et al. K604, a specific acylCoA:cholesterol acyltransferase 1 inhibitor, suppresses proliferation of U251MG glioblastoma cells. Mol Med Rep. 2015;12(4):6037–42. https://doi.org/10.3892/mmr.2015.4200.
Article
PubMed
CAS
Google Scholar
LaPensee CR, Mann JE, Rainey WE, Crudo V, Hunt SW 3rd, Hammer GD. ATR-101, a selective and potent inhibitor of Acyl-CoA acyltransferase 1, induces apoptosis in H295R adrenocortical cells and in the adrenal cortex of dogs. Endocrinology. 2016;157(5):1775–88. https://doi.org/10.1210/en.2015-2052.
Article
PubMed
CAS
Google Scholar
Bemlih S, Poirier MD, El Andaloussi A. Acyl-coenzyme A: cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines. Cancer Biol Ther. 2010;9(12):1025–32.
Article
PubMed
CAS
Google Scholar
Stopsack KH, Gerke TA, Andren O, Andersson SO, Giovannucci EL, Mucci LA, et al. Cholesterol uptake and regulation in high-grade and lethal prostate cancers. Carcinogenesis. 2017;38(8):806–11. https://doi.org/10.1093/carcin/bgx058.
Article
PubMed
CAS
PubMed Central
Google Scholar
Saraon P, Trudel D, Kron K, Dmitromanolakis A, Trachtenberg J, Bapat B, et al. Evaluation and prognostic significance of ACAT1 as a marker of prostate cancer progression. Prostate. 2014;74(4):372–80. https://doi.org/10.1002/pros.22758.
Article
PubMed
CAS
Google Scholar
Li J, Gu D, Lee SS, Song B, Bandyopadhyay S, Chen S, et al. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer. Oncogene. 2016;35(50):6378–88. https://doi.org/10.1038/onc.2016.168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 2006;116(3):607–14. https://doi.org/10.1172/JCI27883.
Article
PubMed
PubMed Central
CAS
Google Scholar
Calkin AC, Tontonoz P. Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(8):1513–8. https://doi.org/10.1161/ATVBAHA.109.191197.
Article
PubMed
CAS
Google Scholar
Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009;325(5936):100–4. https://doi.org/10.1126/science.1168974.
Article
PubMed
PubMed Central
CAS
Google Scholar
Villa GR, Hulce JJ, Zanca C, Bi J, Ikegami S, Cahill GL, et al. An LXR-cholesterol axis creates a metabolic co-dependency for brain cancers. Cancer Cell. 2016;30(5):683–93. https://doi.org/10.1016/j.ccell.2016.09.008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jakobsson T, Treuter E, Gustafsson JA, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci. 2012;33(7):394–404. https://doi.org/10.1016/j.tips.2012.03.013.
Article
PubMed
CAS
Google Scholar
Wu Y, Yu DD, Yan DL, Hu Y, Chen D, Liu Y, et al. Liver X receptor as a drug target for the treatment of breast cancer. Anticancer Drugs. 2016;27(5):373–82. https://doi.org/10.1097/CAD.0000000000000348.
Article
PubMed
CAS
Google Scholar
Flaveny CA, Griffett K, El-Gendy Bel D, Kazantzis M, Sengupta M, Amelio AL, et al. Broad Anti-tumor activity of a small molecule that selectively targets the Warburg effect and lipogenesis. Cancer Cell. 2015;28(1):42–56. https://doi.org/10.1016/j.ccell.2015.05.007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gomes AS, Ramos H, Soares J, Saraiva L. p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res. 2018. https://doi.org/10.1016/j.phrs.2018.03.015.
Article
PubMed
Google Scholar
Tarrado-Castellarnau M, de Atauri P, Cascante M. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget. 2016;7(38):62726–53. https://doi.org/10.18632/oncotarget.10911.
Article
PubMed
PubMed Central
Google Scholar
Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells. 2018. https://doi.org/10.3390/cells7030021.
Article
PubMed
PubMed Central
Google Scholar
Corbet C, Feron O. Emerging roles of lipid metabolism in cancer progression. Curr Opin Clin Nutr Metab Care. 2017;20(4):254–60. https://doi.org/10.1097/MCO.0000000000000381.
Article
PubMed
CAS
Google Scholar
Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res. 2014;53:124–44. https://doi.org/10.1016/j.plipres.2013.12.001.
Article
PubMed
CAS
Google Scholar
Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest. 2010;120(1):142–56. https://doi.org/10.1172/JCI38942.
Article
PubMed
CAS
Google Scholar
Tirado-Velez JM, Joumady I, Saez-Benito A, Cozar-Castellano I, Perdomo G. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation. PLoS ONE. 2012;7(9):e46484. https://doi.org/10.1371/journal.pone.0046484.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu PP, Liu J, Jiang WQ, Carew JS, Ogasawara MA, Pelicano H, et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene. 2016;35(43):5663–73. https://doi.org/10.1038/onc.2016.103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yadav RK, Singh M, Roy S, Ansari MN, Saeedan AS, Kaithwas G. Modulation of oxidative stress response by flaxseed oil: role of lipid peroxidation and underlying mechanisms. Prostaglandins Other Lipid Mediat. 2018;135:21–6. https://doi.org/10.1016/j.prostaglandins.2018.02.003.
Article
PubMed
CAS
Google Scholar
Hao S, Liang B, Huang Q, Dong S, Wu Z, He W, et al. Metabolic networks in ferroptosis. Oncol Lett. 2018;15(4):5405–11. https://doi.org/10.3892/ol.2018.8066.
Article
PubMed
PubMed Central
Google Scholar
Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta. 2017;1861(8):1893–900. https://doi.org/10.1016/j.bbagen.2017.05.019.
Article
PubMed
CAS
Google Scholar
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–25. https://doi.org/10.1016/j.bbrc.2016.10.086.
Article
PubMed
PubMed Central
CAS
Google Scholar
Agmon E, Solon J, Bassereau P, Stockwell BR. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Sci Rep. 2018;8(1):5155. https://doi.org/10.1038/s41598-018-23408-0.
Article
PubMed
CAS
PubMed Central
Google Scholar
Agmon E, Stockwell BR. Lipid homeostasis and regulated cell death. Curr Opin Chem Biol. 2017;39:83–9. https://doi.org/10.1016/j.cbpa.2017.06.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–76. https://doi.org/10.1016/j.tcb.2015.10.014.
Article
PubMed
CAS
Google Scholar
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31. https://doi.org/10.1016/j.cell.2013.12.010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. https://doi.org/10.1038/nchembio.2079.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weiwer M, Bittker JA, Lewis TA, Shimada K, Yang WS, MacPherson L, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett. 2012;22(4):1822–6. https://doi.org/10.1016/j.bmcl.2011.09.047.
Article
PubMed
CAS
Google Scholar
Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45. https://doi.org/10.1016/j.chembiol.2008.02.010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cheng CS, Wang Z, Chen J. Targeting FASN in breast cancer and the discovery of promising inhibitors from natural products derived from traditional Chinese medicine. Evid Based Complement Altern Med. 2014;2014:232946. https://doi.org/10.1155/2014/232946.
Article
Google Scholar
Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2015;2(8):808–24. https://doi.org/10.1016/j.ebiom.2015.06.020.
Article
PubMed
PubMed Central
Google Scholar
Zhou W, Han WF, Landree LE, Thupari JN, Pinn ML, Bililign T, et al. Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells. Cancer Res. 2007;67(7):2964–71. https://doi.org/10.1158/0008-5472.CAN-06-3439.
Article
PubMed
CAS
Google Scholar
Orita H, Coulter J, Lemmon C, Tully E, Vadlamudi A, Medghalchi SM, et al. Selective inhibition of fatty acid synthase for lung cancer treatment. Clin Cancer Res. 2007;13(23):7139–45. https://doi.org/10.1158/1078-0432.CCR-07-1186.
Article
PubMed
CAS
Google Scholar
Alli PM, Pinn ML, Jaffee EM, McFadden JM, Kuhajda FP. Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice. Oncogene. 2005;24(1):39–46. https://doi.org/10.1038/sj.onc.1208174.
Article
PubMed
CAS
Google Scholar
Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget. 2014;5(19):9362–81. https://doi.org/10.18632/oncotarget.2433.
Article
PubMed
PubMed Central
Google Scholar
Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol. 2014;27(5):834–42. https://doi.org/10.1021/tx5000156.
Article
PubMed
CAS
Google Scholar
Pisanu ME, Noto A, De Vitis C, Morrone S, Scognamiglio G, Botti G, et al. Blockade of stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett. 2017;406:93–104. https://doi.org/10.1016/j.canlet.2017.07.027.
Article
PubMed
CAS
Google Scholar
Ren XR, Wang J, Osada T, Mook RA Jr, Morse MA, Barak LS, et al. Perhexiline promotes HER3 ablation through receptor internalization and inhibits tumor growth. Breast Cancer Res. 2015;17:20. https://doi.org/10.1186/s13058-015-0528-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schlaepfer IR, Rider L, Rodrigues LU, Gijon MA, Pac CT, Romero L, et al. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol Cancer Ther. 2014;13(10):2361–71. https://doi.org/10.1158/1535-7163.MCT-14-0183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem. 2017. https://doi.org/10.1146/annurev-biochem-062917-011852.
Article
PubMed
Google Scholar
Gao Y, Zhou Y, Goldstein JL, Brown MS, Radhakrishnan A. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis. J Biol Chem. 2017;292(21):8729–37. https://doi.org/10.1074/jbc.M117.783894.
Article
PubMed
CAS
PubMed Central
Google Scholar