Lee S, Mohsin SK, Mao S, Hilsenbeck SG, Medina D, Allred DC. Hormones, receptors, and growth in hyperplastic enlarged lobular units: early potential precursors of breast cancer. Breast Cancer Res. 2006;8(1):R6.
Article
PubMed Central
PubMed
Google Scholar
Schnitt SJ, Vincent-Salomon A. Columnar cell lesions of the breast. Adv Anat Pathol. 2003;10(3):113–24.
Article
PubMed
Google Scholar
Oyama T, Iijima K, Takei H, Horiguchi J, Iino Y, Nakajima T, et al. Atypical cystic lobule of the breast: an early stage of low-grade ductal carcinoma in-situ. Breast Cancer. 2000;7(4):326–31.
Article
CAS
PubMed
Google Scholar
Dabbs DJ, Carter G, Fudge M, Peng Y, Swalsky P, Finkelstein S. Molecular alterations in columnar cell lesions of the breast. Mod Pathol. 2006;19(3):344–9.
Article
CAS
PubMed
Google Scholar
Shaaban AM, Sloane JP, West CR, Moore FR, Jarvis C, Williams EMI, et al. Histopathologic types of benign breast lesions and the risk of breast cancer: case–control study. Am J Surg Pathol. 2002;26(4):421–30.
Article
CAS
PubMed
Google Scholar
Lakhani SR, Slack DN, Hamoudi RA, Collins N, Stratton MR, Sloane JP. Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab Invest. 1996;74(1):129–35.
CAS
PubMed
Google Scholar
Brock HW, Fisher CL. Maintenance of gene expression patters. Dev Dynamics. 2005;232(3):633–55.
Article
CAS
Google Scholar
Ringrose L, Paro R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet. 2004;38:413–43.
Article
CAS
PubMed
Google Scholar
Vermaak D, Ahmad K, Henkoff S. Maintenance of chromatin states: an open-and-shut case. Curr Opin Cell Biol. 2003;15(3):266–74.
Article
CAS
PubMed
Google Scholar
Hake SB, Xiao A, Allis CD. Linking the epigenetic “language” of covalent histone modifications to cancer. Br J Cancer. 2004;90(4):761–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee S, Medina D, Tsimelzon A, Mohsin SK, Mao S, Wu Y, et al. Alteration of gene expression in the development of early hyperplastic precursors of breast cancer. Am J Pathol. 2007;171(1):252–62.
Article
PubMed Central
CAS
PubMed
Google Scholar
Emery LA, Tripathi A, King C, Kavanah M, Mendez J, Stone MD, et al. Early dysregulation of cell adhesion and extracellular matrix pathway in breast cancer progression. Am J Pathol. 2009;175(3):1292–302.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, et al. Novel definition files for human GeneChip based on GeneAnnot. BMC Bioinformatics. 2007;8:446.
Article
PubMed Central
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate. A practical and powerful approach to multiple testing. J Royal Stat Soc. 1995;57:284–300.
Google Scholar
Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.
Article
CAS
PubMed
Google Scholar
Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev. 2009;18(8):1127–34.
Article
CAS
PubMed
Google Scholar
Reedijk M, Pinnaduwage D, Dickson BC, Mulligan AM, Zhang H, Bull SB, et al. JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. Breast Cancer Res Treat. 2008;111(3):439–48.
Article
CAS
PubMed
Google Scholar
Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W, et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene. 2011;30(39):4075–86.
Article
PubMed Central
CAS
PubMed
Google Scholar
Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A. 2006;103(48):18261–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yustein JT, Liu YC, Gao P, Jie C, Le A, Vuica-Ross M, et al. Induction of ectopic Myc target gene JAG2 augments hypoxic growth and tumorigenesis in a human B-cell model. Proc Natl Acad Sci U S A. 2010;107(8):3534–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ivanov SV, Panaccione A, Nonaka D, Prasad ML, Boyd KL, Brown B, et al. Diagnostic SOX10 gene signatures in salivary adenoid cystic and breast basal-like carcinomas. Br J Cancer. 2013;109(2):444–51.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. 2012;148(5):1015–28.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cimino-Mathews A, Subhawong AP, Elwood H, Warzecha HN, Sharma R, Ho Park B, et al. Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum Pathol. 2013;44(6):959–65.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD, et al. FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development. 2010;137(12):2045–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
Graham JD, Hunt SM, Tran N, Clarke CL. Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators. J Mol Endocrinol. 1999;22(3):295–304.
Article
CAS
PubMed
Google Scholar
Lain AR, Creighton CJ, Connelly OM. Research resource: progesterone receptor targetome underlying mammary gland branching morphogenesis. Mol Endocrinol. 2013;27(10):1743–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Peluso JJ. Non-genomic actions of progesterone in the normal and neoplastic mammalian ovary. Semin Reprod Med. 2007;25(3):198–207.
Article
CAS
PubMed
Google Scholar
Wang YA, Shen K, Wang Y, Brooks SC. Retinoic acid signaling is required for proper morphogenesis of mammary gland. Dev Dyn. 2005;234(4):892–9.
Article
CAS
PubMed
Google Scholar
Boimel PJ, Cruz C, Segall JE. A functional in vivo screen for regulators of tumor progression identifies HOXB2 as a regulator of tumor growth in breast cancer. Genomics. 2011;98(3):164–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ansari KI, Hussain I, Kasiri S, Mandal SS. HOXC10 is overexpressed in breast cancer and transcriptionally regulated by estrogen via involvement of histone methylases MLL3 and MLL4. J Mol Endocrinol. 2012;48(1):61–75.
Article
CAS
PubMed
Google Scholar
Ma L, Benson GV, Lim H, Dey SK, Maas RL. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in müllerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol. 1998;197(2):141–54.
Article
CAS
PubMed
Google Scholar
Oakes SR, Naylor MJ, Asselin-Labat ML, Blazek KD, Gardiner-Garden M, Hilton HN, et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev. 2008;22(5):581–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W, et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol. 2008;10(11):1280–90.
Article
PubMed Central
CAS
PubMed
Google Scholar
Coradini D, Boracchi P, Oriana S, Biganzoli E, Ambrogi F. Differential expression of genes involved in the epigenetic regulation of cell identity in normal human mammary cell commitment and differentiation. Chin J Cancer. 2014;33(10):501–10.
PubMed Central
CAS
PubMed
Google Scholar
Spermann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846–56.
Article
Google Scholar
Mo R, Rao SM, Zhu YJ. Identification of MLL2 complex as a coactivator for estrogen receptor alpha. J Biol Chem. 2006;281(23):15714–20.
Article
CAS
PubMed
Google Scholar
Eberharter A, Becker PB. ATP-dependent nucleosome remodeling: factors and functions. J Cell Sci. 2004;117(Pt17):3707–11.
Article
CAS
PubMed
Google Scholar
Lee HJ, Gallego-Ortega D, Ledger A, Schramek D, Joshi P, Szwarc MM, et al. Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells. Development. 2013;140(7):1397–401.
Article
CAS
PubMed
Google Scholar
Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–7.
Article
CAS
PubMed
Google Scholar
Green KJ, Jones JC. Desmosomes and hemidesmosomes: structure and function of molecular components. FASEB J. 1996;10(8):871–81.
CAS
PubMed
Google Scholar
Koukoulis GK, Virtanen I, Korhonen M, Laitinen L, Quaranta V, Gould VE. Localization of integrins in the normal, hyperplastic, and neoplastic breast. Correlations with their functions as receptors and cell adhesion molecules. Am J Pathol. 1991;139(4):787–99.
PubMed Central
CAS
PubMed
Google Scholar
Damjanovich L, Fülöp B, Adány R, Nemes Z. Integrin expression on normal and neoplastic human breast epithelium. Acta Chir Hung. 1997;36(1–4):69–71.
CAS
PubMed
Google Scholar
Nicholson RI, Gee JMW, Harper ME. EGFR and cancer prognosis. Eur J Cancer. 2001;37 Suppl 4:S9–15.
Article
CAS
PubMed
Google Scholar
Carrascosa C, Obula RG, Missiaglia E, Lehr HA, Delorenzi M, Frattini M, et al. MFG-E8/lactadherin regulates cyclins D1/D3 expression and enhances the tumorigenic potential of mammary epithelial cells. Oncogene. 2012;31(12):1521–32.
Article
CAS
PubMed
Google Scholar
Booth BW, Smith GH. Roles of transforming growth factor-alpha in mammary development and disease. Growth Factors. 2007;25(4):227–35.
Article
CAS
PubMed
Google Scholar
Dave H, Trivedi S, Shah M, Shukla S. Transforming growth factor beta 2: a predictive marker for breast cancer. Indian J Exp Biol. 2011;49(11):879–87.
CAS
PubMed
Google Scholar
Ray PS, Wang J, Qu Y, Sim MS, Shamonki J, Bagaria SP, et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 2010;70(10):3870–6.
Article
CAS
PubMed
Google Scholar
Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res. 1997;57(22):4987–91.
CAS
PubMed
Google Scholar
Mallepell S, Krst A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A. 2006;103(7):2196–201.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tan H, Zhong Y, Pan Z. Autocrine regulation of cell proliferation by estrogen receptor-α in estrogen receptor-α-positive breast cancer cell lines. BMC Cancer. 2009;9:31.
Article
PubMed Central
PubMed
Google Scholar
Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007;9(2):201–9.
Article
CAS
PubMed
Google Scholar
Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M. Positive cross-regulatory loop ties GATA-3 to estrogen receptor α expression in breast cancer. Cancer Res. 2007;67(13):6477–82.
Article
CAS
PubMed
Google Scholar
Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol. 2009;175(3):1246–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kenny AJ, O’Hare MJ, Gusterson BA. Cell-surface peptidases as modulators of growth and differentiation. Lancet. 1989;2(8666):785–7.
Article
CAS
PubMed
Google Scholar
Jones JL, Shaw JA, Pringle JH, Walker RA. Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J Pathol. 2003;201(4):562–72.
Article
CAS
PubMed
Google Scholar
Csanaky K, Doppler W, Tamas A, Kovacs K, Toth G, Reglodi D. Influence of terminal differentiation and PACAP on the cytokine, chemokine, and growth factor secretion of mammary epithelial cells. J Mol Neurosci. 2014;52(1):28–36.
Article
CAS
PubMed
Google Scholar
Sizemore ST, Keri RA. The forkhead box transcription factor FOXC1 promotes breast cancer invasion by inducing matrix metalloprotease 7 (MMP7) expression. J Biol Chem. 2012;287(29):24631–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tkocz D, Crawford NT, Buckley NE, Berry FB, Kennedy RD, Gorski JJ, et al. BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene. 2012;31(32):3667–78.
Article
CAS
PubMed
Google Scholar
Du J, Li L, Ou Z, Kong C, Zhang Y, Dong Z, et al. FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res Treat. 2012;131(1):65–73.
Article
CAS
PubMed
Google Scholar