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Immune precision medicine for cancer: 
a novel insight based on the efficiency 
of immune effector cells
Jean‑François Rossi1,2,3*  , Patrice Céballos3 and Zhao‑Yang Lu4

Abstract 

Cancer cell growth is associated with immune surveillance failure. Nowadays, restoring the desired immune response 
against cancer cells remains a major therapeutic strategy. Due to the recent advances in biological knowledge, 
efficient therapeutic tools have been developed to support the best bio-clinical approaches for immune precision 
therapy. One of the most important successes in immune therapy is represented by the applicational use of monoclo‑
nal antibodies, particularly the use of rituximab for B-cell lymphoproliferative disorders. More recently, other monoclo‑
nal antibodies have been developed, to inhibit immune checkpoints within the tumor microenvironment that limit 
immune suppression, or to enhance some immune functions with immune adjuvants through different targets such 
as Toll-receptor agonists. The aim is to inhibit cancer proliferation by the diminishing/elimination of cancer residual 
cells and clinically improving the response duration with no or few adverse effects. This effect is supported by enhanc‑
ing the number, functions, and activity of the immune effector cells, including the natural killer (NK) lymphocytes, 
NKT-lymphocytes, γδ T-lymphocytes, cytotoxic T-lymphocytes, directly or indirectly through vaccines particularly with 
neoantigens, and by lowering the functions of the immune suppressive cells. Beyond these new therapeutics and 
their personalized usage, new considerations have to be taken into account, such as epigenetic regulation particularly 
from microbiota, evaluation of transversal functions, particularly cellular metabolism, and consideration to the clinical 
consequences at the body level. The aim of this review is to discuss some practical aspects of immune therapy, giving 
to clinicians the concept of immune effector cells balancing between control and tolerance. Immunological precision 
medicine is a combination of modern biological knowledge and clinical therapeutic decisions in a global vision of the 
patient.
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Introduction
The development of a disease in each individual is an 
inherently heterogeneous process that is determined by 
a unique combination of exogenous and endogenous fac-
tors. Molecular pathological epidemiology (MPE) pro-
vides a novel insight in underlying the causal mechanisms 
of a disease, to find an approach for individualized treat-
ment [1–3]. According to the definition of the National 
Institutes of Health, precision medicine is “an emerging 
approach for disease treatment and prevention that takes 

into account individual variability in genes, environ-
ment, and lifestyle for each person” [4]. Precision medi-
cine has become a generic term referring to techniques 
that evaluate either the host or the disease to enhance 
the likelihood of beneficial treatment outcomes from 
medical interventions [5]. Immune precision medicine 
is not only when immune therapy merges with precision 
medicine [6], but it also encompasses a better biological 
understanding of the tumor cells and its microenviron-
ment; a better evaluation of the mechanisms implicated 
in immune control, immune senescence, and the differ-
ent crossroads within a bio-clinical overview, in order to 
define a personalized therapeutic strategy [7]. Based on 
the concept of immune surveillance, the immune system 
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should ideally work to eradicate cancer cells [8, 9]. How-
ever, tumors are still able to evade this system, leading to 
immune surveillance failure [10]. Cancer immunotherapy 
can be envisaged by the following four strategies to block 
the tumor immune evasion and to restore immune sur-
veillance: (1) increasing the number of immune effector 
cells (IECs) by infusing ex vivo expanded IECs to improve 
the effector/tumor ratio; (2) increasing the IECs recog-
nition affinity to tumor antigens or tumor-associated 
antigens (TAA); (3) improving the homing of killer IECs 
to the cancer cells through its microenvironment by 
amplifying their trafficking and homing mechanisms; (4) 
blocking the immune suppression ability of cancer cells. 
These strategies may restore the immune surveillance by 
not only killing the tumor cells but also preventing the 
emergence of new tumor cell clones which may result 
due to gene mutation after anti-tumor therapy.

Immune therapy was initiated in the early nineties 
through attenuated bacteria to create inflammatory stim-
uli [11]. After the Second World War, allogeneic trans-
plantation (AlloT) was developed as a rescue strategy 
for radiation-induced bone marrow injury and was then 
introduced in the treatment for leukemias [12]. The pres-
entation of the new immune component from the donor 
to a recipient made it possible to control the tumoral 
residual disease. The efficacy of AlloT has demonstrated 
in hematological malignancies, particularly for acute leu-
kemias, and post-transplantation, where the administra-
tion of donor lymphocyte infusion (DLI) has improved 
the efficacy of immune therapy [13]. However, despite a 
modest therapeutic benefit was observed when specifi-
cally-activated and amplified immune cells were adminis-
tered in certain solid tumors, AlloT failed to demonstrate 
major responses in solid cancers [14]; probably due to 
the poor accessibility of IEC to target the cancer cells. 
The development of immunological research has lead 
clinicians to directly use IEC-drugs that have been acti-
vated ex vivo to treat malignancies, and different immune 
adjuvants to reinforce cellular activity or inhibit specific 
immune checkpoints.

The aim of this review is to discuss how and when to 
use the different available immune therapeutic tools to 
support the activation, amplification, or administration 
of active IEC against the cancer cells.

Pretreatment considerations: asking the right 
questions
A personalized and complete bio-clinical evaluation of 
the functional IEC is mandatory to guide the correct 
therapeutic choice, as to whether reinforce the IEC to 
kill cancer cells or to lower the number of those IEC 
which promotes cancer cell evasion. For making the 
right therapeutic choice, the following questions should 

be taken into consideration: (1) how to improve the 
patient’s care based on the evaluation of the patient’s 
immune status; (2) how to maintain an efficient IEC 
number to cancer cells ratio, (3) whether is it necessary 
to infuse IEC-drugs or to stimulate the patients’ IEC, (4) 
what is the anti-tumor activity of these IEC, their hom-
ing and presence within the cancer microenvironment; 
(5) how to lower the unfavorable mechanisms, particu-
larly those that favor cancer cell growth and (6) what 
would be the right timing for treatment administration, 
and which combination or sequence of drug infusion to 
implement. Below, we discuss the different aspects that 
need to consider before giving immunotherapy.

Evaluation of the different cancer cell aspects
Cancer microenvironment
The interaction between tumor cells and non-tumor 
cells mediated by cell–cell contact and soluble mol-
ecules, such as cytokines, chemokines, growth factors, 
and enzymes create the cancer microenvironment [15, 
16]. This is a heterogeneous medium containing both 
activating and blocking cells which target the tumor. 
We observed that IEC localization has an impact on the 
prognosis of patients having follicular lymphoma (FL), 
particularly for CD8 T-cells and T regulators (Treg or 
FoxP3 positive cells) [17]. In that study, the interfolli-
cular CD8/FOXP3 positive cell ratio was significantly 
higher in patients with histological grade 3 tumors 
(2.04 vs. 1.63) and had a high-risk FL international 
prognostic index (FLIPI) (2.99 vs. 1.53) compared to 
those with grade 1–2 tumors or a low-intermediate 
FLIPI index. Similar results were obtained for the fol-
licular CD8/FOXP3 positive cell ratio. The interfolli-
cular CD8/FOXP3 ratio was found to have prognostic 
value (5-year overall survival [OS] of 82% vs. 59% for 
a ratio of ± 1.68). In addition, an interfollicular FOXP3 
positive cell number of more than 86  cells/mm2 was 
correlated with a more favorable outcome (P  = 0.03) 
[17]. So, modulation of these IEC could be achieved 
at a clinical level by administering cytotoxic T-cells or 
lowering Tregs by short immune suppression. The bio-
logical/chemical status of the cancer microenviron-
ment is associated with immune response and clinical 
prognosis. This includes cycling hypoxia with spatial 
and temporal fluctuations in oxygen levels that are cor-
related to neo-vascularization, chemoresistance, and 
tumor metastasis [18, 19]. Different information from 
the cancer microenvironment, particularly the equi-
librium state between cytotoxic/suppressive cells and 
their localization and functional status are necessary 
information for further precise immunomedical bio-
logical algorithms.
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Cancer cells antigens expression
Self-produced proteins produced in the body are non-
antigenic due to self-tolerance. Proteins produced by 
tumors have abnormal structures and act as tumor anti-
gens. When these are present only on tumor cells, they 
are known as tumor-specific antigen (TSA) and when 
present on both tumor cells and some normal cells, they 
are known as TAA. The major histocompatibility com-
plex class II (MHCII) is responsible for presenting these 
tumor-derived antigen peptides to the T-lymphocytes 
[20]. Targeting these cancer antigens is the key for anti-
tumor immune therapy and for increasing efficacies, 
identifying the density of these antigenic peptides is 
important.

Evaluation of tumor mass and its reduction possibility
Tumor mass evaluation became a major parameter for 
patient follow-up in the context of clinical research as 
well as in standard medicine. A great number of tools 
have been developed to perform such analysis, from 
standard medical imaging to the evaluation of minimal 
residual disease by flow cytometry or next-generation 
sequencing. Dynamic evaluation of the tumor mass is a 
major parameter to define the right choice of the immune 
tools and the right time to use them. This is based on the 
balance of efficiency between the number of cancer cells 
and the number and efficacy of killer IECs [21]. Immune 
therapy was generally used after tumor mass debulking 
to control residual disease. Nowadays, due to the efficacy 
of the new immune tools including IEC, the therapeutic 
choice needs to be guided by this new concept, the bal-
ance of efficiency between tumor mass and the number 
of IEC, needing dynamic evaluation.

Cancer immune‑evasion mechanisms
The mechanisms by which cancer cells evade the immune 
system should be thoroughly considered, and to include 
the evaluation of the functional status of the cancer cells, 
their proliferative and metastatic mechanisms, their met-
abolic status, the MHC expression which is responsible 
for displaying the tumor-derived antigen peptides on 
the antigen-presenting cells (APCs), and the mutanome 
that transforms mutated tumoral proteins into neoanti-
gens, leading to immunome [22–24]. The aim is to rein-
force the immune system to destroy the cancer cells by 
blocking their protective mechanisms. The Food and 
Drug Administration (FDA) has approved the anti-pro-
grammed death-1 (PD-1) monoclonal antibody (mAb), 
pembrolizumab, for any solid tumor overexpressing the 
PD-1 receptor ligand, which is associated to microsatel-
lite instability-high, a condition of genetic hypermut-
ability which generates mutated proteins which are not 

recognized as self-proteins and represent neoantigens 
[25]. It was the first time that a tissue-agnostic drug 
was approved by the FDA based on tumor genetics and 
may represent conditions to combine vaccination and 
immune checkpoint inhibitors.

Evaluation of the patient immune system
The first step of precision immune medicine is to evalu-
ate the functions of the patients’ immune system, with 
the aim of determining its ability to respond to thera-
peutic interventions. These include the assessments of 
the genetic context of the patient, particularly the auto-
immune processes that may require gene polymorphism 
analysis, the evaluation of immunosenescence based on 
the immune functions such as tryptophan metabolism 
and cytokine production, and immune exhaustion includ-
ing the evaluation of the potential consequences of chem-
otherapeutic or targeted drugs on the patient’s condition. 
Further, the existing inflammatory processes within the 
patient may have a major impact on immune responses, 
immune resistance, and metastatic process through acti-
vation of neovascularization and myeloid-derived sup-
pressor cells in the cancer microenvironment [26]. They 
may have developed upon the interactions between can-
cer cells and their microenvironment, microbiota or due 
to existing co-morbidities [27, 28]. The C-reactive protein 
(CRP) can be used to evaluate the inflammation condi-
tion [29] and may provide hints on the immune status of 
the patients.

The metabolic status of the immune cells also changes 
under diverse conditions and is associated with modified 
functions of the T-lymphocytes [30]. MHC-I modulation 
due to the changes in tumor cell metabolism regulates 
the tumor sensitivity to cytotoxic T-lymphocytes (CTL) 
and to natural killer lymphocytes (NK) through extracel-
lular-signal-regulated kinase 5 (ERK5) expression that 
modulates MHC-I complex expression and influences 
the T- and NK activities [31]. Standard evaluation by flow 
cytometry of the circulating IEC is currently used but is 
poorly correlated to the immune status within the can-
cer microenvironment. The evaluation of cellular spe-
cific response against TSA after vaccine therapy could be 
performed by demonstrating a restricted immune T-cell 
response including T-cell receptor (TcR) rearrangement, 
ELIspot or other techniques [32].

Choosing IEC targeting
The products to interfere in anti-tumor effect sup-
ported by the immune system can be classified into cell-
containing products and non-cell-containing products. 
Non-cell-containing products include monoclonal anti-
bodies (mAbs), cytokines and cytokine inhibitors, some 
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chemical immune modulators, and anti-tumor vaccines 
pulsed with different adjuvants [33–38].

Immune effector cells, particularly αβT-, γδT-, NK-, 
and NKT-lymphocytes, are immune cells that mainly 
support cancer immune surveillance. In cancer patients, 
autologous IECs are generally inactive because the activ-
ity and/or the number of these cells are reduced by tumor 
cells in the tumor microenvironment. One therapeu-
tic possibility is to improve the activity or the number 
of IEC to bypass the mechanisms of immune failure, by 
using immune modifiers or by switching specific antigen 
presentation. Likewise, Allo-innate cells, including NK 
lymphocytes could be used because of their non-MHC 
recognition mechanism and stress protein expression, 
such as the heat shock proteins (HSP), in tumor cells.

In the early eighties, clinicians used cytokines, such 
as interleukin (IL) 2 [39], to expand autologous immune 
cells, particularly T-lymphocytes [40–42]. Autologous 
lymphocyte-activated killer cells (LAK) and cytokine-
induced killer (CIK) lymphocytes, derived from the 
peripheral blood of the patients can be expanded ex vivo, 
and then re-infused into them [43]. In this way, the tissues 
surrounding the cancer cells were more likely to contain 
a larger number of immune cells, particularly tumor-infil-
trating lymphocytes (TIL) with anti-cancer activity. TILs 
taken from tumor tissue obtained after biopsy were then 
considered as antigen-specific T-lymphocytes, and were 
cultured and expanded in the lab before their re-infu-
sion [44]. However, the major problem of such a product 
was the uncontrolled cell heterogeneity including both 
specific cytotoxic cells and Tregs that may favor tumor 
progression. This cellular heterogeneity may explain the 
lack of major clinical benefit. Specific anti-cancer eradi-
cation is supported by the recognition of TAA presented 
by APCs that triggers specific T-lymphocytes [45–48]. 
Epigenetic modifying agents such as deacetylase inhibi-
tors may modulate TAA expression and the release of 
mutated proteins representing neoantigens which may 
promote vaccination therapy [49, 50]. Recent advances 
in active cellular therapies have shown that by genetically 
modifying the T-lymphocytes, their efficacy through the 
antigen receptor (TCR) or tumor cell linkage via chimeric 
antigen receptor (CAR) could be enhanced [51]. As such, 
modern technology is paving the path to amplify the 
immune system, which can become better equipped with 
more effective IEC against cancer cells. Below, we review 
and discuss the different IEC.

αβ T‑lymphocytes
Cytotoxic T-lymphocytes expressing αβ TcR represent 
the main subset of circulating lymphocytes in which 
the MHC-restricted antigen recognition is mandatory 
for their activity. LAK, TIL and some CIK lymphocytes 

mentioned above are mainly αβ T lymphocytes. Autolo-
gous CTL, being predominantly αβ T-lymphocytes, for 
instance, the CAR-T lymphocytes and TcR-engineered 
T-lymphocytes, have been genetically engineered to spe-
cifically target and to destroy cancer cells.

CAR-T lymphocytes were developed by generating 
a genetic construct that encodes the antigen-binding 
region of a mAb and the intracellular components of the 
TcR that activate signals upon binding to target cell sur-
face antigens. Different generations of CAR-T lympho-
cytes were developed based on the combination of the 
antigen-binding domains of the heavy and light chains 
of antibodies that are fused to the CD3-ζ intracellu-
lar signaling domain and co-stimulatory molecules to 
enhance the avidity of T-lymphocytes for antigens [51]. 
Using the CAR-T lymphocytes as a therapeutic strategy 
has been associated with clinical success in hematologi-
cal malignancies including acute myeloid leukemias by 
using chimeric CD123 [the IL3-Rα chain] receptor-mod-
ified T-lymphocytes [52], chronic lymphocytic leukemia 
(CLL) [53], pre-B acute lymphoblastic leukemia with 
CD19, and other lymphoid malignancies [54]. However, 
in B-acute lymphocytic leukemia, the median event-free 
survival was 6.1  months, and 26% of patients developed 
severe cytokine release syndrome [55] with fatal outcome 
observed [56]. Recently, kinetics and biomarkers have 
been identified, with the description of a classification-
tree algorithm to guide studies and to propose therapy 
including anti-IL-6 [57, 58]. There have been more than 
70 clinical trials with CAR-T lymphocytes referred at the 
National Institute of Health (NIH) [59]. The response rate 
superior to 80% observed in refractory lymphoid malig-
nancies has led several pharmaceutical companies in 
Western countries and China to invest in the CAR-T strat-
egies [60]. In contrast, the TcR engineering is based on the 
ability to genetically modify lymphocytes to express TcR 
with specificity against a chosen antigen that allows these 
chimeric TcR-T cells to target tumor cells with MHC class 
I-restricted antigen peptide presentation. This methodol-
ogy was first used with MART-1 antigen in melanoma but 
demonstrated a lower response rate (13%) as compared to 
that observed with TIL (51–72%) [61].

γδ T‑lymphocytes
γδT-lymphocytes represent a minor subset (10%) of cir-
culating lymphocytes, with a dominant Vγ9Vδ2 TcR cell 
subpopulation, that recognizes the endogenous pool of iso-
pentenyl pyrophosphate. γδT-lymphocytes are implicated 
in anti-viral and anti-tumor responses, and in modulating 
immune response [62–64]. Like NK lymphocytes, γδT-
lymphocytes respond to stimulation by stress- and/or infec-
tion-induced ligands. Usually, these ligands are weakly- or 
not-expressed, and are up-regulated in the presence of 
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stress or infection, leading to cytotoxicity by binding to the 
NK Gene 2D (NKG2D) receptor or by direct recognition 
[65]. In addition, γδT-lymphocytes also express pattern rec-
ognition receptors (PPR), such as Toll-like receptors (TLR) 
that modulate their activation. γδT-lymphocytes exert their 
activity through a TcR-independent recognition of non-
peptidic phosphorylated antigens, called phosphoantigens 
(PA) produced by many bacteria such as different strains of 
Staphylococcus, Enterococcus faecalis, Myxococcus fulvus, 
Streptococcus mutans, Lactobacillus casei, and Lactobacil-
lus plantarum, or derived from the mevalonate isoprenoid 
pathway [66]. γδT-lymphocytes express CD16 (FCγRIII) 
receptor, leading to antibody-dependent cell-mediated 
cytotoxicity (ADCC) [67]. In hematological malignancies, 
large inter-individual variations in the expansion capacity 
of γδT-lymphocytes have been observed among different 
patients having multiple myeloma (MM), non-Hodgkin 
lymphoma (NHL), and CLL [68]. Our group has demon-
strated that γδT-lymphocytes could be amplified by both 
biphosphonates and IL2, and in  vitro observations have 
shown that these allogeneic cells could kill both human 
MM cell lines and fresh myeloma tumoral cells from 
patients [69]. The anti-tumor effect of γδT-lymphocytes 
has been mainly demonstrated in lymphoid malignan-
cies [70, 71]. Two strategies have been applied, including 
adoptive cell transfer after in vitro expansion, particularly 
used in solid cancers, and in  vivo therapeutic activation 
of γδT-lymphocytes by PA or aminobiphosphonates with 
low dose IL-2 that has been preferentially used in hema-
tological malignancies. Using both therapeutic strategies, 
the response rate was variable due to the limited number 
of patients included in these studies but the clinical benefit 
was observed when combined with other treatments, for 
instance, AlloT [72].

To demonstrate that γδT-lymphocytes are also ampli-
fied in  vivo, we have conducted a multicenter phase II 
clinical study comprising of 45 patients who presented 
with advanced FL in relapse or refractory relapse, since 
last line of therapy, with a median time of 19.1  months 
[Protocol No. IPH1 101-202, EudraCT No. 2006-006891-
39, presented at EHA 2010;95:p10]. The patients received 
bromohydrin pyrophosphate (BrHPP, named IPH1101 
from Innate Pharma Inc. Marseille, France), at 750  mg/
m2 3 times every 3  weeks, low dose IL2 (8  MIU, daily 
for 5 days, every 3 weeks) and rituximab (375 mg/m2, 4 
times weekly) by intravenous route. The median age of 
the patients was 59  years (range 39–74  years), and 47% 
of them had a low FLIPI and 27% had high FLIPI. Selec-
tive amplification of targeted CD16+ γδT-lymphocytes 
was observed, peaking after the first cycle of therapy 
(Fig. 1a). No amplification of the Treg lymphocytes was 
observed, but they demonstrated a tendency to increase 
slightly after the third cycle of the treatment. The 

objective response rate (ORR) was 47.4%, with the high-
est ORR observed in patients with low FLIPI (Fig.  1b). 
The tolerance was satisfactory, with 90% of the adverse 
events being grade 1–2, possibly due to the use of IL2. 
No biomarker was correlated to clinical response, except 
a concentration of rituximab superior to 25, 000 ng/mL 
at day-86 as previously reported [73, 74]. In vitro syner-
gism of γδT-lymphocytes was also observed with a new 
generation of anti-CD20 mAbs like obinutuzumab [75]. 
We observed that γδT-lymphocytes were able to amplify 
the activity of other immune cells, particularly the NK 
lymphocytes and dendritic cells (DC) [76, 77]. These 
results showed the efficacy and non-toxic effects of γδT-
lymphocytes to shrink tumor mass, possibly due to their 

CD16+ γδ T cells 

n = 39 patients 

CRR ORR 

FLIPI 

Low 
(n = 21) 7 (33.3%) 11 (52.4%) 

Intermediate / Poor 
(n = 17) 3 (17.6%) 6 (35.2%) 

a

b

Fig. 1  Results of the phase II study combining in vivo γδ T-cells 
stimulator (IPH1101), interleukin 2 and rituximab for patients having 
follicular lymphoma. The patients were treated with bromohydrin 
pyrophosphate (BrHPP, Innate Pharma Inc. Marseille, France, at 
750 mL/m2, 3 times every 3 weeks), low dose IL-2 (8 MIU, daily for 
5 days, every 3 weeks) and rituximab (375 mg/m2, 4 times weekly). 
There was a dramatic increase of circulating T-lymphocytes without 
any amplification of other lymphocyte subpopulations including 
Tregs. a The change of circulating immune cell subpopulations at 
day 21 as compared to day 0. b Complete response rate (CRR) and 
objective response rate (ORR) in patients having FL depending 
on the FLIPI (Follicular Lymphoma International Prognostic Index), 
i.e., low index and intermediate/poor index. IL2: interleukin 2; Treg: 
T-regulator; NK: natural killer lymphocytes; C1D8: cycle 1 Day 8
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non-MHC-restriction with no graft versus host (GVH) 
effect, thereby leading to the opportunity for new clinical 
trials regarding the CAR γδT-lymphocytes [78].

NK lymphocytes
Natural killer lymphocytes are defined as CD3− CD56+ 
lymphocytes, with different circulating subpopula-
tions, particularly CD56bright and CD56dim lymphocyte 
subsets. NK lymphocytes can rapidly kill target cells 
independently to prior immunization or MHC restric-
tion, rending these cells attractive for immune therapy 
[79]. This activation process is regulated by a balanced 
mechanism between the inhibitory and activating sig-
nals from different receptors, including NK cytotoxicity 
receptors (NCR), C-type lectin receptors (NKG2A/B, 
NKG2C, NKG2D, NKG2F) and killer immunoglobulin-
like receptors (KIR) [79], leading to greater responsive-
ness to subsequent activation stimuli through a process 
called NK cell licensing [80, 81], with the possible gen-
eration of long-lived memory cells [82]. More than 740 
clinical trials, corresponding to different origins of the 
NK, from peripheral blood, umbilical cord blood, pro-
genitors or NK-92 cell line [83], with different modes of 
amplification/activation of autologous or Allo- (includ-
ing haplo-identical) NK, are referred at the NIH. The 
first clinical trial with NK lymphocytes was based on 
autologous amplified NK lymphocytes by using in  vivo 
cytokines, i.e., IL2, IL12, IL15, IL18, IL21 and type I 
interferon (IFN) [84]. By using such stimulations, cells 
became LAK, or CIK if γIFN was added to the culture 
conditions 24 h before stimulation by anti-CD3 with IL2 
[85, 86]. CIKs are represented by a mixture of T-cells, NK 
T-cells and NK lymphocytes which particularly express 
CD16, CD45RA, CR7, CD27, CD28. The number of 
cytotoxic cells needed for lysing tumor cells is 2 × 1011 
for LAK and only 0.5–5 × 1010 for CIKs [87]. Cytotoxic 
T-cells are effective against cancer cells, but also respon-
sible for graft-versus-host disease (GVHD) effect. In Allo 
cellular products, the minimal contamination of T-cells 
to avoid GVHD has been defined from Allo bone marrow 
transplantation at lower than 1 × 103/kg [88].

Autologous NK lymphocytes have been used in 
both solid and hematological malignancies with minor 
clinical efficacy but demonstrated better efficacy with 
haplo-identical-Allo NK lymphocytes [89, 90]. As such, 
haplo-identical or AlloNK lymphocytes (usually with 
KIR-mismatch) were mainly administered with AlloT 
lymphocytes in hematological malignancies, or in 
combination with mAbs (i.e., rituximab, trastuzumab, 
antiGD2 F8, elotuzumab). Different amplification/acti-
vation procedures were used, with cytokines (IL2, IL12, 
IL15, IL15, and IL21) with or without K562-m15-41BB 
ligand engineered cell line as feeder cells, generally 

using CD56-selection and/or CD3/CD19 depletion 
and followed by in  vivo cytokine administration (IL2 
or IL15) or IL2DT fusion protein to deplete Treg that 
express high amount of IL2R α chain [90]. To activate 
autologous NK in  vivo, other therapeutic procedures 
have been developed by using an anti-KIR mAb with 
no clinical efficacy when used alone, or by inhibiting 
disintegrin and metalloproteinase domain-containing 
protein 17 (ADAM17) to improve CD16 expression 
[91–93]. In most of the clinical trials, NK cell-drugs 
were prepared from a donor to a recipient. Umbili-
cal cord blood offers the possibility to obtain NK cel-
lular products from progenitor CD34+ cells as shown 
by Glycostem Inc. (Hertogenbosch, Netherland), or by 
amplifying and activating mixture of naïve NK lym-
phocytes from the umbilical cord blood [94]. CAR-NK 
have been developed in pre- and early clinical studies, 
with redirected human NK and NK-92 cell line, against 
CD19, CD20, CD38, CD138, CD244, human epithelial 
growth receptor (HER) 2, disialoganglioside (GD) 2, 
epithelial cell adhesion molecule (EPCAM), CCND3 
Subset (CS)1, lectin, mannose-binding (LMAN)1 [95, 
96].

Due to their capacity for killing cancer cells, the use 
of activated NK and CAR-NK lymphocytes represent 
an attractive anti-cancer cell-drug for both hematologi-
cal malignancies and solid tumors.

NK T lymphocytes
NKT cells are a subpopulation of lymphocytes pos-
sessing the phenotypic properties of both T- and 
NK-lymphocytes, which makes them attractive for 
immune therapy. Invariant NKT, also named as type 
I NKT, lymphocytes expressed specific TcR that rec-
ognizes lipid antigens presented by the conserved and 
non-polymorphic MHC class I like molecule CD1d 
and receptors for cytokines such as IL2, IL8, IL23 and 
IL25 [97]. Several drugs have been generated for trig-
gering these cells through CD1d molecules, including 
α-galactosylceramides synthetic analogs, but no major 
clinical effect was observed [98]. To direct cancer cell 
lysis, invariant NKT lymphocytes was used to activate 
both innate and adaptive immune cells in the tumor 
microenvironment, through the secretion of cytokines, 
such as Th1-, Th2- and Th17-type responses, particu-
larly the γ-chain cytokine or CD132 (i.e., IL2, IL4, IL7, 
IL9, IL15 and IL21-R). In addition, the adoptive trans-
fer of type I NKT lymphocytes generated in vitro from 
autologous lymphocytes or from Allo-CD34 progeni-
tors cells isolated from umbilical cord blood using IL15 
and stem cell factor in preclinical models have demon-
strated promising results [99].
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Activation of IEC and restoring anti‑tumor immune 
functions
Activation of IEC’s anti‑tumor effect by DCs
Mature autologous DCs are professional APC, gener-
ated from mononuclear cells (MC) by using a cocktail 
of cytokines [100]. DC stimulated specific CD8 posi-
tive cells against TSA. Autologous DC pulsed with 
TAA or cell lysates have been obtained ex vivo, with the 
expression of different surface markers and the secre-
tion of diverse cytokines and chemokines, as previously 
described [101] and illustrated in Fig.  2. In metastatic 
prostate cancer, activated and pulsed DCs have been 
generated ex  vivo from autologous MC, by using a 
prostatic acid phosphatase-granulocyte macrophage 
colony stimulating factor (GM-CSF) fusion protein, 
the Sipuleucel-T. This cellular product was used in 

a randomized study, demonstrating a 4.1-month in 
median survival difference observed in favor of the 
vaccination arm as compared to the control arm [102]. 
Vaccination programs using TSA alone or DC-pulsed 
with TSA have been extensively used in different can-
cers, particularly using idiotype shared by cancer cells 
in FL, but with little clinical benefits [103–105]. As 
the multitargeting approach is considered to be more 
active against cancer cells, we used DC-based therapy 
pulsed with tumor cell lysates in a phase II study for 
patients in relapse having FL [106]. A specific response 
was demonstrated after intra-dermal injections (Fig. 3a, 
b). Eleven patients were treated, of whom two had com-
plete responses (CR) before vaccination and 2 had CR 
after the vaccination program. An early (15  days after 
vaccination) [18F] fluorodeoxyglucose-positron emis-
sion tomography was performed in one patient, and it 
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Fig. 2  Ex vivo maturation and differentiation of dendritic cells (DC) from monocytes. Mononuclear cells were collected by apheresis from the 
patient. These mononuclear cells were differentiated ex vivo to immature DC in the presence of GM-CSF and IL4 or IL13. The mature DCs were 
obtained after stimulation by TNF-α and they exhibited different biomarkers, such as CD86, CD80, CCR7, and the antigen-MHC complex. GM-CSF: 
Granulocyte–Macrophage Colony Stimulating Factor; IL: interleukin; TNF: Tumor Necrosis Factor; MHC: major histocompatibility complex; CTL: 
cytotoxic lymphocytes; CCR: C–C chemokine receptor; Ag: antigen; αv: integrin alpha V; β5: integrin beta 5; CTL: cytotoxic lymphocytes; DC: 
dendritic cells; FcR: Fc receptor; Poly-IC: polycytidylic acid; RNA: ribonucleic acid
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Fig. 3  A phase II clinical trial with DC pulsed with tumoral cell lysates from patients having follicular lymphoma. a Intradermal injection of 0.2 mL 
of DC-pulsed with tumoral lysates (5 × 106 DC/mL) (5 sites) and KLH intradermal injection (100 µg in 0.2 mL) used as a control. Magnification: ×1; 
b Delayed hypersensitivity after intradermal injections (1) and cutaneous biopsies (2) showing important CD3 positive infiltrate and CD68 positive 
macrophages; c [18F] fluorodeoxyglucose-positron emission tomography scanning (FDG pet-scan): (1) before vaccination with tumoral lymph 
node (yellow arrow), (2) 15 days after the vaccination with increased hypermetabolism of the lymph node (white arrow), (3) 2 months after the 
vaccination with the disappearance of the hypermetabolism (yellow arrow), suggesting an activation of the IECs within the lymph node. 1: injection 
site with 0.2 mL of DC-pulsed with tumoral lysates; 2: injection site of control; DC: dendritic cells; KLH: Keyhole limpet hemocyanin
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showed an early metabolic activation in the lymph node 
(Fig. 3c), that may constitute an early clinical indicator 
of the efficacy among the immunomonitoring.

Clinical responses regarding the use of DCs have 
been disappointing, with an ORR of around 15% [107]. 
Improvements may include the use of immune adju-
vants that improve the antigen delivery as mineral salts, 
emulsions, and liposomes, or immunostimulants such 
as TLR-ligands (particularly TLR7/8 agonists such as 
the imidazoquinoline family [108], cytokines, sapo-
nins, bacterial exotoxins and exosomes [109–112]. 
Recently, boosting the capture and presentation of TAA 
were developed by using hydroxylapatite combined to 
tumor extract containing HSP from a frozen sample 
after thawing, then subcutaneously injected, disposal 
named APAVAC® (URODELIA Inc, Toulouse France) 
[113]. A randomized placebo-controlled double-blinded 
chemo-immunotherapy clinical trial was conducted in 
a pet dog model of diffuse large b-cell lymphoma using 
APAVAC®. The median time to progression and median 
lymphoma-specific survival were significantly different 
in dogs having chemo-immunotherapy vs. chemotherapy 
alone; 304 days vs. 41 days (P =0.0004) and 505 days vs. 
159  days (P = 0.0018), respectively [114]. Preliminary 
data in humans have been published with promising data 
in advanced cancers as shown by Ciocca et al. [113].

The efficiency of DC migration from the skin to the 
lymph nodes has been studied and is linked to the matu-
ration status and the C–C chemokine receptor (CCR) 7 
expression of the DCs [115]. Recently, a pilot clinical trial 
was reported with a personalized vaccine generated by 
autologous DCs pulsed with whole-tumor cell lysate in 
patients having ovarian cancer [116]. This vaccine elicited 
efficiently a broad antitumor immunity, including private 
neo-antigens. Tumor cells eradication has been achieved 
by using in situ vaccination with a TLR ligand and anti-
OX-40 antibody in an animal model [116].

Important interactions between IECs has led to an 
amplified or synergistic activity among the different 
immune therapies supporting combined therapies. The 
aim of such combined strategies is to amplify specific 
recognition to reinforce the killing activity or to lower 
immune suppressive effect. TAA or MHC class I expres-
sion at the cell surface of cancer cells could be reinforced 
by epigenetic modulation or by interfering on metabo-
lism pathways [23, 30, 31, 117]. Cell crosstalk is essential 
for immune therapy. Subsets of CD56brightCD16dim/− NK 
lymphocytes present in lymph nodes possess helper role 
in the production of γIFN that may improve the DC 
activity [118]. By combining mAbs and certain cytokines 
that activate DCs, we observed a delayed but progressive 
clinical response which may be explained by an in  vivo 
vaccination process, as suggested in one patient treated 

by rituximab and GM-CSF [119] (Fig.  4). This obser-
vation suggested that rituximab possibly enhances the 
apoptosis of tumor cells, and GM-CSF participates to 
in vivo generation of mature DC and may prolong disease 
immune control.

Blocking the immune suppression source of cancer cells
The T-cells can be activated by two signals in normal 
physiology. One when the T-cell receptor is bounded 
to an antigen-MHC or second, when the T-cell surface 
receptor, CD28, binds to CD80/CD86 proteins [120]. 
CTLA4 inhibits the binding of CD80/CD86 to CD28 and 
negatively regulate the activation of T-cells. The immune 
response can be enhanced by blocking immune check-
points shared by T-cells with the presence of their ligands 
on both cancer cells and DCs (Fig.  5) [121, 122]. The 
expression of immune checkpoints by TIL, and particu-
larly Treg, results in low responsiveness of the immune 
control of cancer cells. Thereby, targeting these markers 
are very attractive targets for reversing immune toler-
ance, particularly in cancer. The anti-CTLA-4 mAb, ipili-
mumab, received the FDA approval in March 2011 for 
the treatment of metastatic melanoma [123], metastatic 
renal cell carcinoma, and non-small cell lung carcinoma 
[124], as it has shown efficacy in causing a shift increase 
in the number of cytotoxic T-cells to enhance anti-tumor 
response. Further development is ongoing in both solid 
tumors and hematological malignancies with different 
molecules (MDX-1106 or nivolumab, and CT-011 or 
pidilizumab as anti-PD-1; MDX-1105 as anti-PD-L1, and 
other molecules directed against T-cell Immunoglobu-
lin and mucin domain-containing protein 3 [Tim-3], 
lymphocyte activation gene-3 [LAG-3], and V-domain 
Ig-containing suppressor of T-cell activation [VISTA]). 
More than 92 clinical trials regarding immune check-
point inhibitors are now referred at the NIH [125].

Defining the therapeutic strategy
The therapeutic strategy must be clearly defined based 
upon proper analysis regarding the characteristics of the 
cancer cells, the tumor-host microenvironment, and the 
immune system status of the patient. Different therapeu-
tic options are available aiming to stimulate IEC activity, 
to block immune checkpoints or immune cells that favor 
cancer cell growth. Lymphodepletion is generally used to 
modify the host microenvironment, particularly to limit 
the Treg activity [126]. This can be achieved by giving 
total body irradiation, non-myeloablative chemotherapy 
as conditioning regimen for AlloT or prescribing a low 
dose of chemotherapy such as cyclophosphamide, 5-fluo-
rouracil, fludarabine, gemcitabine, bortezomib, sorafenib 
and sunitinib [127].
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Other targeted therapies have been described to 
have an immune effect. Recently, idelalisib, an inhibi-
tor of phosphoinositide 3 kinase δ [128] has been 
mentioned to be able to deplete Treg and myeloid-
derived suppressor cells [129], and ibrutinib, to favor 

antigen presentation [130]. Other therapeutic strate-
gies have been developed, including molecules target-
ing Treg, such as anti-CD25 molecules, anti-Foxp3 or 
anti-CTLA4, inhibitors of STAT3 that regulates the 
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Fig. 4  Delayed complete response observed in a patient receiving GM-CSF and rituximab, suggesting an in vivo vaccination. A 58 years-old 
Male was diagnosed in December 1996 as follicular lymphoma grade II, stage IIIAb, FLIPI 2 with high tumor burden. He received mini-CHOP and 
interferon alfa followed by a partial response. His disease progressed in March 1998 and he was treated by three courses of DHAP and high dose 
therapy with autologous transplantation associated with a complete response. He relapsed in May 1999 and received rituximab with partial 
response. After reprogression in May 2000 (a), he received GM-CSF and rituximab with a long-lasting regression and fluctuation of the tumor over 
2 years, as observed on the following scanners (b–d) and no tumor on e, suggesting an in vivo vaccination. He reprogressed in October 2006 
and was treated by rituximab with stabilization for 1 year. FLIPI: Follicular Lymphoma International Prognostic Index; CHOP: cyclophosphamide, 
doxorubicin, vincristine, prednisone; DHAP: dexamethasone, cytarabine, cis-platinum; GM-CSF: Granulocyte–Macrophage Colony Stimulating Factor
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expression of TGF-β and IL10 cytokines or inhibitors of 
indoleamine 2,3-dioxygenase [127, 131].

Strategy for Immune therapy requires choosing the 
best immune therapeutic tools at the right time, as sug-
gested in Fig.  6. In addition, a combination of immune 
and standard treatments is also crucial, meaning that 
radiotherapy or chemotherapy may favor the circulation 
of neoantigens generated after cancer cell killing, to be 
collected for vaccine programs. After high dose therapy 
in patients having MM, our group has described a burst 
of cytokines, particularly of IL7/IL15 at day-8 and IL6 at 
day-15 [132]. Autologous transplantation offers another 
“window” of opportunity for using IECs. High dose ther-
apy followed by autologous transplantation is generally 
associated with the induction of a pre-apoptotic status 
for both the tumor cells and the CD3 positive cells that 
could be saved by cytokine peaks. This opens two thera-
peutic opportunities. One, to block IL6 which is the sur-
vival/proliferation factor of MM cells, as described in one 

of our previous study [133], and/or second, to administer 
activated/amplified IEC after high dose therapy, includ-
ing γδT, NK, or CAR-T lymphocytes [134]. Similarly, 
AlloT and particularly haplo-identical AlloT are consid-
ered as a model for immune therapy.

Conclusion
Immune precision medicine is a complex medical trail, 
starting from a careful personalized evaluation of the 
characteristics of the cancer cell and the conditions of 
the cancer-host microenvironment as well as the bio-
clinical status of the host. Personalized evaluation of the 
disease opens the way to identify the optimal therapeu-
tic strategy. The aim is to reinforce the IECs that kill can-
cer cells and to decrease those factors that favor cancer 
cell growth. These can be achieved, in a dynamic way, 
by administering IECs such as CAR-lymphocytes, to kill 
tumor cells. Then, the immune system could be chal-
lenged to eradicate residual disease with vaccination 
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whose activity can be amplified by inhibitors of immune 
checkpoints and/or immune adjuvants. Based on such, 
we firmly believe that immune precision medicine is 
internal medicine with modern tools that are beneficial 
for improving the treatment and outcomes of cancer 
patients.
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