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Abstract 

Background:  Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer (NSCLC); it is 
therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment. Four 
important transporter genes are expressed in the kidney, including organic cation transporter 2 (OCT2), multidrug and 
toxin extrusion 1 (MATE1), ATP-binding cassette subfamily B member 1 (ABCB1), and ATP-binding cassette subfamily C 
member 2 (ABCC2), and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum 
drugs. This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinum-
based chemotherapy response and toxicity in NSCLC patients.

Methods:  A total of 403 Chinese NSCLC patients were recruited for this study. All patients were newly diagnosed 
with NSCLC and received at least two cycles of platinum-based chemotherapy. The tumor response and toxicity 
were evaluated after two cycles of treatment, and the patients’ genomic DNA was extracted. Seven single-nucleotide 
polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemo‑
therapy toxicity and response.

Results:  OCT2 rs316019 was associated with hepatotoxicity (P = 0.026) and hematological toxicity (P = 0.039), and 
MATE1 rs2289669 was associated with hematological toxicity induced by platinum (P = 0.016). In addition, ABCC2 
rs717620 was significantly associated with the platinum-based chemotherapy response (P = 0.031). ABCB1 polymor‑
phisms were associated with neither response nor toxicity.

Conclusion:  OCT2 rs316019, MATE1 rs2289669, and ABCC2 rs717620 might be potential clinical markers for predicting 
chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients.
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Background
Lung cancer is a common cancer and the leading cause 
of cancer-related deaths in the world [1] and in China [1, 
2]. Small cell lung cancer and non–small cell lung cancer 
(NSCLC) are two major pathologic types of lung cancer. 
Platinum-based chemotherapy is the first-line treatment 
for NSCLC; however, drug resistance and toxicity are sig-
nificant obstacles to successful treatment [3]. Although 
certain genetic polymorphisms have been reported to 
be associated with the platinum response and toxicity in 
NSCLC patients, these results conflict with each other 
[4–7]. Thus, it is important to discover new biomarkers 
that can be used to predict platinum-based chemother-
apy efficacy and toxicity.

Platinum is mainly eliminated by the proximal tubules 
in the kidney, and transporters expressed in the kidney 
play important roles in the distribution and excretion 
of platinum. Therefore, genetic polymorphisms in these 
transporters may alter the efficacy and adverse effects of 
platinum-based chemotherapy [8]. Organic cation trans-
porter 2 (OCT2), encoded by the solute carrier family 
22, member 2 (SLC22A2) gene, is a major transporter 
expressed on the basolateral domain of renal tubular 
cells in the kidney [9]. OCT2 plays an important role 
in the uptake of cationic compounds in the kidney, and 
previous studies have suggested that this transporter 
plays a potential role in increasing platinum uptake 
and sensitivity [6, 10]. Multidrug and toxin extrusion 1 
(MATE1), encoded by the solute carrier family 47, mem-
ber 1 (SLC47A1) gene, was identified as an H+-coupled 
organic cation exporter [11]. This transporter is mainly 
expressed on the luminal membranes of the renal urinary 
duct [12]. MATE1 is thought to mediate the final step 
of the renal tubular secretion of platinum [13]. Previous 
studies showed that platinum was taken up into the renal 
proximal tubular cells mainly via OCT2 and secreted into 
the lumen via MATE1; both proteins were thus associ-
ated with the disposition of platinum [14]. ATP-binding 
cassette (ABC) multidrug transporters play an important 
role in limiting influx and facilitating efflux to prevent the 
intracellular accumulation of their own substrate com-
pounds [15]. ATP-binding cassette subfamily B member 
1 (ABCB1) and ATP-binding cassette subfamily C mem-
ber 2 (ABCC2) are important members of the ABC trans-
porter family [16]. Studies have suggested that ABCC2 is 
involved in the excretion of organic anions, including cis-
platin [17], and ABCC2 has been implicated in platinum 
resistance and associated toxicity [18].

Our previous investigation showed that gene poly-
morphisms could be useful clinical markers to assess the 

platinum response and toxicity in NSCLC patients [19–
21]. Because ABCC2 and ABCB1 are important members 
of the ABC family and OCT2 and MATE1 are important 
transporters mainly expressed in the kidney, our inves-
tigation focused on these transporters. In this study, we 
aimed to evaluate the association of seven important 
single-nucleotide polymorphisms (SNPs) of these trans-
porters with platinum-based chemotherapy response and 
toxicity in NSCLC patients.

Methods
Study subjects
The inclusion criteria for the eligible patients were as 
follows: (1) newly diagnosed with NSCLC, including 
adenocarcinoma and squamous cell carcinoma as deter-
mined by histology or cytology; (2) received at least two 
cycles of platinum-based chemotherapy; and (3) tumor 
response and toxicity could be evaluated after two cycles 
of treatment. The exclusion criteria included patients 
who experienced the following: (1) radical or biological 
therapy before or during the chemotherapy; (2) surgery 
before or during chemotherapy; (3) current pregnancy or 
lactation; and (4) an active infection or other concomi-
tant malignancies.

All individuals were recruited from The Affiliated Can-
cer Hospital or Xiangya Hospital of Central South Uni-
versity (Changsha, Hunan, China) between June 2010 
and May 2013. All patients provided written informed 
consent before they participated in this study. The study 
protocol was approved by the Ethics Committee of 
Xiangya School of Medicine, Central South University 
(Registration number: CTXY-110008-1). The clinical 
research admission was approved by the Chinese Clinical 
Trial Registry with the registration number of ChiCTR-
RNC-12002892 (http://www.chictr.org/cn/).

SNP selection, DNA extraction, and genotyping
Seven SNPs in 4 genes (OCT2, ABCB1, ABCC2, and 
MATE1) were selected from the National Center for 
Biotechnology Information (NCBI) database. All of 
the SNPs satisfied the following criteria: (1) SNPs that 
were reported to be associated with lung cancer occur-
rence or development according to the results of existing 
research; (2) minor allele frequency (MAF) ≥5% in the 
Chinese Han population; and (3) tagging SNPs selected 
by Haploview (version 4.2 Cambridge, MA, USA) using 
pair-wise tagging with default settings (pair-wise r2 
threshold = 0.8).

All blood samples were stored at −20°C until DNA 
extraction. Within 2 months after the collection of blood 
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samples, genomic DNA was isolated using a Genomic 
DNA Purification Kit (Promega, Madison, WI, USA) and 
stored at −20°C before use. Genotyping was conducted 
using the Sequenom Mass Array Genotype Platform 
(Sequenom, San Diego, CA, USA).

Toxicity and response evaluation criteria
The toxicity induced by platinum during chemotherapy 
was estimated on the basis of the National Cancer Insti-
tute Common Toxicity Criteria Version 3.0, in which the 
extent of toxicity is classified into five grades as follows: 
grade 1 for mild adverse events; grade 2 for moderate 
adverse events; grade 3 for severe adverse events; grade 
4 for life-threatening or disabling adverse events; and 
grade 5 for death related to adverse events. We recruited 
patients who were classified as having grade 0–4 adverse 
events and divided the patients into two categories. 
Patients who had grade 0–2 adverse events were regarded 
as having low toxicity, whereas those with grade 3–4 
adverse events were considered as having severe toxicity.

According to the Response Evaluation Criteria in Solid 
Tumors (RECIST) guidelines (version 1.1), the tumor 
response was assessed after the first two cycles of chemo-
therapy by professional clinicians. The responses to ther-
apy were classified into four groups: complete response 
(CR), partial response (PR), progressive disease (PD), and 
stable disease (SD). Patients with CR or PR were regarded 
as being sensitive to platinum, whereas those with SD or 
PD were considered platinum-resistant.

Statistical analysis
Patients were dichotomized according to the outcomes 
of toxicity and response. The allele frequencies of all 
the SNPs conforming to Hardy–Weinberg equilibrium 
(HWE) were analyzed with a χ2 test (P > 0.05). Sex, age, 
smoking status, tumor histology, clinical stage, and East-
ern Cooperative Oncology Group (ECOG) performance 
status were considered as potential covariates for the 
logistic regression analysis. The call rate was defined as 
the percentage of successfully genotyped patients for 
each SNP. All analyses were performed using PLINK 
(version 1.07, http://www.pngu.mgh.harvard.edu/pur-
cell/plink/) and SPSS 13.0 (SPSS Inc, Chicago, IL, USA) 
with three models: (1) additive model for comparing car-
riers of the minor allele with major allele subjects; (2) 
dominant model for comparing carriers of the minor 
allele with the major homozygous subjects; and (3) reces-
sive model for comparing carriers of the major allele with 
the minor homozygous subjects. Odds ratios (ORs) and 
their 95% confidence intervals (CIs) were used to assess 
the associations between outcomes and gene polymor-
phisms. A value of P  <  0.05 was considered statistically 
significant.

Results
Patient characteristics
A total of 412 patients who received first-line platinum-
based chemotherapy were recruited for this study. After 
excluding some samples, 403 NSCLC patients were even-
tually enrolled. Seven SNPs were genotyped in these 
patients, all of which were conformed in HWE (P > 0.05). 
The basic information on these SNPs and patients is 
shown in Tables 1 and 2. The median age of the patients 
was 56 years (range 21–75 years). Severe overall toxicity 
occurred in 135 (33.5%) patients. Among these, severe 
hematological toxicity, hepatotoxicity, and gastrointes-
tinal toxicity occurred in 95 (23.6%), 55 (13.6%), and 35 
(8.7%) patients, respectively.

Tumor response was assessed after the first two cycles 
of chemotherapy. However, we lost the assessment 
information of 8 patients in the process of sample col-
lection; the remaining 395 NSCLC patients were finally 
evaluated, and the basic clinical characteristics of these 
patients are shown in Table 2. Among them, 115 (29.1%) 
were regarded as being sensitive to platinum-based 
chemotherapy, and 280 (70.9%) were regarded as being 
resistant.

Associations of OCT2, ABCB1, ABCC2, and MATE1 
polymorphisms with the overall toxicity of platinum‑based 
chemotherapy
As shown in Table  3, OCT2 rs316019 was significantly 
associated with the overall toxicity caused by platinum-
based chemotherapy in the additive (OR 0.59, 95% CI 
0.37–0.93, P  =  0.024) and dominant (OR 0.59, 95% 
CI 0.36–0.98, P  =  0.041) models. Similar results were 
obtained for MATE1 rs2289669 (recessive model: OR 
1.73, 95% CI 1.06–2.82, P = 0.029). OCT2 rs316019 was 
also associated with hepatotoxicity in the additive (OR 
0.42, 95% CI 0.20–0.90, P = 0.026) and dominant models 
(OR 0.42, 95% CI 0.19–0.93, P = 0.033) and with hema-
tological toxicity in the additive model (OR 0.58, 95% 
CI 0.34–0.97, P  =  0.039). MATE1 rs2289669 was sig-
nificantly associated with hematological toxicity in the 
recessive model (OR 1.92, 95% CI 1.13–3.25, P = 0.016). 
No SNPs were significantly associated with gastrointesti-
nal toxicity in any of the three models.

Stratification analyses were performed to further exam-
ine overall toxicity (Figs.  1, 2). The patients were strati-
fied according to four clinical characteristics: squamous 
cell carcinoma or adenocarcinoma; ≤55 or >55 years of 
age; non-smoker or smoker; and male or female. OCT2 
rs316019 was significantly associated with squamous 
carcinoma (additive model: OR 0.42, 95% CI 0.20–0.86, 
P = 0.018; dominant model: OR 0.42, 95% CI 0.20–0.91, 
P = 0.028), patients ≤55 years of age (additive model: OR 
0.50, 95% CI 0.25–0.97, P = 0.040; dominant model: OR 
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0.45, 95% CI 0.21–0.94, P = 0.035), being a non-smoker 
(additive model: OR 0.41, 95% CI 0.20–0.85, P =  0.015; 
dominant model: OR 0.36, 95% CI 0.17–0.77, P = 0.009), 
and female patients (dominant model: OR 0.38, 95% CI 
0.15–0.95, P  =  0.039). In contrast, MATE1 rs2289669 
was significantly associated with overall toxicity for 
patients >55 years of age (recessive model: OR 1.92, 95% 
CI 1.01–3.66, P = 0.047), being a smoker (additive model: 
OR 0.64, 95% CI 0.42–0.97, P = 0.036; dominant model: 
OR 0.48, 95% CI 0.25–0.91, P = 0.024), and male patients 
(additive model: OR 1.51, 95% CI 1.04–2.19, P =  0.028; 
recessive model: OR 1.91, 95% CI 1.08–3.37, P = 0.025).

Taken together, these results indicate that G allele car-
riers of OCT2 rs316019 polymorphisms have better 
tolerance to hematological toxicity and hepatotoxicity, 
whereas A allele carriers of rs2289669 polymorphisms 
have poor tolerance to hematological toxicity caused by 
platinum-based chemotherapy.

Associations of OCT2, ABCB1, ABCC2, and MATE1 
polymorphisms with platinum‑based chemotherapy 
responses
The platinum-based chemotherapy responses of 395 
NSCLC patients are summarized in Table 4. There was a 
significant association of ABCC2 rs717620 with chemo-
therapy response in the additive (OR 0.64, 95% CI 0.43–
0.96, P = 0.006) and dominant models (OR 0.54, 95% CI 
0.34–0.86, P =  0.010). However, no significant associa-
tion was found between other SNPs and chemotherapy 
response.

Additional stratification analyses are shown in Fig.  3. 
ABCC2 rs717620 was significantly associated with chem-
otherapy response for adenocarcinoma patients (additive 
model: OR 0.55, 95% CI 0.31–0.96, P = 0.036; dominant 
model: OR 0.41, 95% CI 0.22–0.79, P =  0.007), patients 
>55  years of age (dominant model: OR 0.43, 95% CI 
0.23–0.82, P =  0.010), smoker patients (additive model: 
OR 0.46, 95% CI 0.27–0.80, P = 0.006; dominant model: 
OR 0.40, 95% CI 0.22–0.73, P = 0.003), and male patients 

(additive model: OR 0.60, 95% CI 0.38–0.94, P =  0.027; 
dominant model: OR 0.51, 95% CI 0.30–0.86, P = 0.011).

Therefore, we concluded that A allele carriers of 
ABCC2 rs717620 polymorphisms have a better response 
to platinum-based chemotherapy, especially those who 
are >55 years of age, smokers, or male.

Discussion
In this study, we investigated whether polymorphisms in 
transporter genes (OCT2, ABCB1, ABCC2, and MATE1) 
were associated with toxicity and the response to plati-
num-based chemotherapy in 403 NSCLC patients. We 
evaluated the associations of these gene polymorphisms 
with gastrointestinal toxicity, hematological toxicity, 
hepatotoxicity, and overall toxicity and performed a strat-
ification analysis of overall toxicity to extract additional 
information. Our results showed that OCT2 rs316019 
was associated with hepatotoxicity and hematologi-
cal toxicity, whereas MATE1 rs2289669 was associated 
with hematological toxicity induced by platinum. How-
ever, there was no statistical association between either 
OCT2 rs316019 or MATE1 rs2289669 polymorphisms 
and the platinum-based chemotherapy response in these 
patients. We found that only ABCC2 rs717620 may be 
related to chemotherapy response in NSCLC patients.

Our results showed that OCT2 rs316019 was associ-
ated with platinum-induced hematological toxicity, hepa-
totoxicity, and overall toxicity. G allele carriers had better 
tolerance to hematological toxicity and hepatotoxicity 
after platinum-based chemotherapy. Moreover, NSCLC 
patients ≤55 years old, non-smokers, or those diagnosed 
with squamous cell carcinoma carrying the G allele of 
OCT2 rs316019 presented a lower risk of overall severe 
toxicity than their counterparts. This polymorphism was 
also associated with chemotherapy toxicity for female 
patients in the present study. All these results indicated 
that OCT2 rs316019 was associated with reduced cispl-
atin-induced hematological toxicity and hepatotoxicity in 
Chinese NSCLC patients.

Table 1  The characteristics of all single-nucleotide polymorphisms (SNPs) involved in the study

MAF minor allele frequency, HWE Hardy–Weinberg equilibrium, OCT2 organic cation transporter 2, ABCB1 ATP-binding cassette subfamily B member 1, ABCC2 ATP-
binding cassette subfamily C member 2, MATE1 multidrug and toxin extrusion 1

Gene Location SNP Alleles MAF Call rate (%) HWE P value

OCT2 6q25.3 rs316003 C/T 0.78 (T) 96.28 0.903

rs316019 G/T 0.85 (G) 96.28 0.949

ABCB1 7q21.12 rs1045642 C/T 0.38 (T) 98.26 0.969

ABCC2 10q24 rs717620 G/A 0.19 (A) 95.53 0.766

rs2273697 G/A 0.10 (A) 99.75 0.357

rs3740066 G/A 0.20 (A) 96.77 0.873

MATE1 17p11.2 rs2289669 G/A 0.50 (A) 96.03 0.128
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Table 2  The clinical characteristics of the 403 non-small cell lung cancer (NSCLC) patients

All data are presented as the number of patients with percentage in parentheses

CR complete response, PR partial response, PD progressive disease, SD stable disease
a  The assessment information of 8 patients were lost in the process of sample collection

Variate Total Overall toxicity Hematological toxicity Hepatotoxicity Gastrointestinal 
toxicity

Responsea

Grade 0–2 Grade 3–4 Grade 0–2 Grade 3–4 Grade 0–2 Grade 3–4 Grade 0–2 Grade 3–4 CR + PR SD + PD

All 403 268 (66.5) 135 (33.5) 308 (76.4) 95 (23.6) 348 (86.4) 55 (13.6) 368 (91.3) 35 (8.7) 115 (29.1) 280 (70.9)

Age (years)

 ≤55 176 (43.7) 114 (42.5) 62 (45.9) 139 (45.1) 37 (38.9) 144 (41.4) 32 (58.2) 156 (42.4) 20 (57.1) 54 (47.0) 118 (42.1)

 >55 227 (56.3) 154 (57.5) 73 (54.1) 169 (54.9) 58 (61.1) 204 (58.6) 23 (41.8) 212 (57.6) 15 (42.9) 61 (53.0) 162 (57.9)

Smoking status

 Never 170 (42.2) 107 (39.9) 63 (46.7) 131 (42.5) 39 (41.1) 142 (40.8) 28 (50.9) 154 (41.8) 16 (45.7) 46 (40.0) 119 (42.5)

 Ever 233 (57.8) 161 (60.1) 72 (53.3) 177 (57.5) 56 (58.9) 206 (59.2) 27 (49.1) 214 (58.2) 19 (54.3) 69 (60.0) 161 (57.5)

Sex

 Male 307 (76.2) 214 (79.9) 93 (68.9) 240 (77.9) 67 (70.5) 269 (77.3) 38 (69.1) 286 (71.7) 21 (60.0) 90 (78.3) 213 (76.1)

 Female 96 (23.8) 54 (20.1) 42 (31.1) 68 (22.1) 28 (29.5) 79 (22.7) 17 (30.9) 82 (22.3) 14 (40.0) 25 (21.7) 67 (23.9)

Eastern cooperative oncology group (ECOG) performance status

 0–1 380 (94.3) 255 (95.2) 125 (92.6) 290 (94.2) 90 (94.7) 329 (94.5) 51 (92.7) 348 (94.6) 32 (91.4) 110 (95.7) 263 (93.9)

 2 23 (5.7) 13 (4.8) 10 (7.4) 18 (5.8) 5 (5.3) 19 (5.5) 4 (7.3) 20 (5.4) 3 (8.6) 5 (4.3) 17 (6.1)

Histological type

 Adeno‑
carci‑
noma

217 (53.8) 144 (53.7) 73 (54.1) 180 (58.4) 37 (38.9) 186 (53.4) 31 (56.4) 198 (53.8) 19 (54.3) 68 (59.1) 115 (41.1)

 Squa‑
mous 
cell

186 (46.2) 124 (46.3) 62 (45.9) 128 (41.6) 58 (61.1) 162 (46.6) 24 (43.6) 170 (46.2) 16 (45.7) 47 (40.9) 165 (58.9)

TNM stage

 I–II 9 (2.2) 7 (2.6) 2 (1.5) 7 (2.3) 2 (2.1) 9 (2.6) 0 (0.0) 8 (2.2) 1 (2.9) 2 (1.7) 7 (2.5)

 III–IV 394 (97.8) 261 (97.4) 133 (98.5) 301 (97.7) 93 (97.9) 339 (97.4) 55 (100.0) 360 (97.8) 34 (97.1) 113 (98.3) 273 (97.5)

Platinum-based drug

 Cisplatin 333 (82.6) 222 (82.8) 111 (82.2) 255 (82.8) 78 (82.1) 284 (81.6) 49 (89.1) 302 (82.1) 31 (88.6) 99 (86.1) 229 (81.8)

 Carbopl‑
atin

70 (17.4) 46 (17.2) 24 (17.8) 53 (17.2) 17 (17.9) 64 (18.4) 6 (10.9) 66 (17.9) 4 (11.4) 16 (13.9) 51 (18.2)

Chemotherapy regimen

 Platinum-
gemcit‑
abine

196 (48.6) 119 (44.4) 77 (57.0) 131 (42.5) 65 (68.4) 168 (48.3) 28 (50.9) 179 (48.6) 17 (48.6) 73 (63.5) 120 (42.8)

 Platinum-
peme‑
trexed

148 (36.7) 105 (39.2) 43 (31.9) 127 (41.2) 21 (22.1) 130 (37.4) 18 (32.7) 133 (36.1) 15 (42.8) 27 (23.5) 117 (41.8)

 Platinum-
pacli‑
taxel

35 (8.7) 27 (10.1) 8 (5.9) 30 (9.8) 5 (5.3) 30 (8.6) 5 (9.1) 33 (9.0) 2 (5.7) 9 (7.8) 26 (9.3)

 Platinum-
doc‑
etaxel

20 (5.0) 14 (5.2) 6 (4.5) 17 (5.5) 3 (3.2) 16 (4.6) 4 (7.3) 19 (5.2) 1 (2.9) 4 (3.5) 15 (5.4)

 Platinum-
navel‑
bine

4 (1.0) 3 (1.1) 1 (0.7) 3 (1.0) 1 (1.0) 4 (1.1) 0 (0.0) 4 (1.1) 0 (0.0) 2 (1.7) 2 (0.7)
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Table 3  Associations of seven SNPs with platinum-based chemotherapy toxicity in the 403 NSCLC patients

Gene SNP Genotype Hepatotoxicity

Grade 1–2  
[cases (%)]

Grade 3–4  
[cases (%)]

Additive model Dominant model Recessive model

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Total 348 55

OCT2

 rs316003 CC 18 (5.2) 1 (1.8) 0.61 (0.34–1.08) 0.089 0.59 (0.31–1.12) 0.109 0.37 (0.05–2.83) 0.336

CT 120 (34.5) 14 (25.5)

TT 298 (85.6) 37 (67.3)

 rs316019 TT 9 (2.6) 0 (0.0) 0.42 (0.20–0.90) 0.026 0.42 (0.19–0.93) 0.033 0.00 0.998

GT 87 (25.0) 8 (14.5)

GG 239 (68.7) 45 (81.8)

ABCB1

 rs1045642 TT 51 (14.7) 6 (10.9) 0.81 (0.52–1.26) 0.354 0.75 (0.42–1.35) 0.337 0.81 (0.32–2.01) 0.643

CT 165 (47.4) 24 (43.6)

CC 126 (36.2) 24 (43.6)

ABCC2

 rs717620 AA 10 (2.9) 2 (3.6) 0.93 (0.54–1.59) 0.782 0.89 (0.48–1.66) 0.712 1.11 (0.23–5.44) 0.895

AG 104 (29.9) 15 (27.3)

GG 216 (62.1) 38 (69.1)

 rs2273697 AA 2 (0.6) 0 (0.0) 1.15 (0.58–2.28) 0.682 1.20 (0.59–2.44) 0.608 0.00 0.999

AG 60 (17.2) 12 (21.8)

GG 285 (81.9) 43 (78.2)

 rs3740066 AA 12 (3.4) 2 (3.6) 0.69 (0.38–1.23) 0.206 0.60 (0.31–1.17) 0.134 1.04 (0.22–4.92) 0.958

AG 113 (32.5) 11 (20.0)

GG 213 (61.2) 39 (70.9)

MATE1

 rs2289669 AA 79 (22.7) 10 (18.2) 0.86 (0.56–1.33) 0.500 0.92 (0.46–1.82) 0.804 0.73 (0.35–1.53) 0.402

AG 175 (50.3) 30 (54.5)

GG 80 (23.0) 13 (23.6)

Gene SNP Genotype Gastrointestinal toxicity

Grade 1–2  
[cases (%)]

Grade 3–4  
[cases (%)]c

Additive model Dominant model Recessive model

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Total 368 35

OCT2

 rs316003 CC 17 (4.6) 2 (5.7) 1.27 (0.72–2.25) 0.412 1.40 (0.69–2.85) 0.357 1.14 (0.25–5.23) 0.870

CT 120 (32.6) 14 (40.0)

TT 217 (59.0) 18 (51.4)

 rs316019 TT 8 (2.2) 1 (2.9) 0.49 (0.20–1.17) 0.106 0.39 (0.15–1.05) 0.062 1.16 (0.14–9.74) 0.893

GT 91 (24.7) 4 (11.4)

GG 254 (69.0) 30 (85.7)

ABCB1

 rs1045642 TT 52 (14.1) 5 (14.3) 0.71 (0.41–1.22) 0.217 0.54 (0.26–1.10) 0.091 0.96 (0.35–2.63) 0.941

CT 177 (48.1) 12 (34.3)

CC 133 (36.1) 17 (48.6)

ABCC2

 rs717620 AA 11 (3.0) 1 (2.9) 0.79 (0.38–1.61) 0.510 0.73 (0.32–1.63) 0.438 1.09 (0.13–8.81) 0.939

AG 111 (30.2) 8 (22.9)

GG 231 (62.8) 23 (65.7)
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Table 3  continued

Gene SNP Genotype Gastrointestinal toxicity

Grade 1–2  
[cases (%)]

Grade 3–4  
[cases (%)]c

Additive model Dominant model Recessive model

OR (95% CI) P OR (95% CI) P OR (95% CI) P

 rs2273697 AA 2 (0.5) 0 (0.0) 1.94 (0.93–4.04) 0.078 2.10 (0.97–4.53) 0.060 0.00 0.999

AG 61 (16.6) 11 (31.4)

GG 304 (82.6) 24 (68.6)

 rs3740066 AA 12 (3.3) 2 (5.7) 0.91 (0.47–1.79) 0.795 0.76 (0.35–1.67) 0.500 2.25 (0.47–10.75) 0.309

AG 116 (31.5) 8 (22.9)

GG 229 (62.2) 23 (65.7)

MATE1

 rs2289669 AA 79 (21.5) 10 (28.6) 1.35 (0.80–2.28) 0.254 1.55 (0.62–3.89) 0.350 1.44 (0.66–3.16) 0.363

AG 187 (50.8) 18 (51.4)

GG 87 (23.6) 6 (17.1)

Gene SNP Genotype Hematological toxicity

Grade 1–2  
[cases (%)]

Grade 3–4  
[cases (%)]

Additive model Dominant model Recessive model

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Total 308 95

OCT2

 rs316003 CC 17 (5.5) 2 (2.1) 0.75 (0.49–1.15) 0.190 0.78 (0.47–1.28) 0.324 0.37 (0.08–1.67) 0.196

CT 103 (33.4) 31 (32.6)

TT 176 (57.1) 59 (62.1)

 rs316019 TT 9 (2.9) 0 (0.0) 0.58 (0.34–0.97) 0.039 0.61 (0.34–1.07) 0.085 0.00 0.998

GT 75 (24.4) 20 (21.1)

GG 209 (67.9) 75 (78.9)

ABCB1

 rs1045642 TT 44 (14.3) 13 (13.7) 0.92 (0.65–1.31) 0.648 0.87 (0.53–1.41) 0.560 0.97 (0.49–1.93) 0.936

CT 147 (47.7) 42 (44.2)

CC 111 (36.0) 39 (41.1)

ABCC2

 rs717620 AA 8 (2.6) 4 (4.2) 1.15 (0.74–1.78) 0.546 1.09 (0.66–1.81) 0.736 1.88 (0.53–6.72) 0.330

AG 91 (29.5) 28 (29.5)

GG 196 (63.6) 58 (61.1)

 rs2273697 AA 1 (0.3) 1 (1.1) 1.13 (0.64–1.98) 0.679 1.10 (0.60–1.99) 0.759 2.46 (0.15–40.00) 0.528

AG 54 (17.5) 18 (18.9)

GG 252 (81.8) 76 (80.0)

 rs3740066 AA 12 (3.9) 2 (2.1) 0.89 (0.58–1.38) 0.600 0.94 (0.57–1.55) 0.806 0.49 (0.11–2.27) 0.361

AG 94 (30.5) 30 (31.6)

GG 192 (62.3) 60 (63.2)

MATE1

 rs2289669 AA 58 (18.8) 31 (32.6) 1.30 (0.92–1.83) 0.141 0.99 (0.57–1.72) 0.973 1.92 (1.13–3.25) 0.016

AG 164 (53.2) 41 (43.2)

GG 70 (22.7) 23 (24.2)
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Table 3  continued

Gene SNP Genotype Overall toxicity

Grade 1–2  
[cases (%)]

Grade 3–4  
[cases (%)]

Additive model Dominant model Recessive model

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Total 268 135

OCT2

 rs316003 CC 14 (5.2) 5 (3.7) 0.85 (0.59–1.23) 0.400 0.86 (0.56–1.33) 0.502 0.66 (0.23–1.90) 0.446

CT 91 (34.0) 43 (31.9)

TT 154 (57.5) 81 (60.0)

 rs316019 TT 8 (3.0) 1 (0.7) 0.59 (0.37–0.93) 0.024 0.59 (0.36–0.98) 0.041 0.21 (0.03–1.75) 0.150

GT 68 (25.4) 27 (20.0)

GG 179 (66.8) 105 (77.8)

ABCB1

 rs1045642 TT 39 (14.6) 18 (13.3) 0.91 (0.67–1.24) 0.539 0.89 (0.58–1.38) 0.604 0.86 (0.47–1.58) 0.632

CT 126 (47.0) 63 (46.7)

CC 98 (36.6) 52 (38.5)

ABCC2

 rs717620 AA 7 (2.6) 5 (3.7) 1.04 (0.70–1.54) 0.838 1.00 (0.63–1.56) 0.985 1.52 (0.47–4.91) 0.489

AG 80 (29.9) 39 (28.9)

GG 169 (63.1) 85 (63.0)

 rs2273697 AA 1 (0.4) 1 (0.7) 1.49 (0.90–2.54) 0.118 1.50 (0.89–2.53) 0.128 2.30 (0.14–37.24) 0.557

AG 42 (15.7) 30 (22.2)

GG 224 (83.6) 104 (77.0)

 rs3740066 AA 11 (4.1) 3 (2.2) 0.86 (0.58–1.27) 0.446 0.88 (0.56–1.37) 0.573 0.58 (0.16–2.12) 0.409

AG 83 (31.0) 41 (30.4)

GG 165 (61.6) 87 (64.4)

MATE1

 rs2289669 AA 50 (18.7) 39 (28.9) 1.30 (1.00–1.86) 0.052 1.28 (0.77–2.13) 0.335 1.73 (1.06–2.82) 0.029

AG 140 (52.2) 65 (48.1)

GG 65 (24.3) 28 (20.7)

OCT2 organic cation transporter 2, ABCB1 ATP-binding cassette subfamily B member 1, ABCC2 ATP-binding cassette subfamily C member 2, MATE1 multidrug and toxin 
extrusion 1

Numerous variations of the MATE1 gene have been 
determined to affect the clinical response to cationic 
drugs. It has also been reported that MATE1 transporter 
activity was reduced by rs2289669 [22]. Indeed, our 
results demonstrated that MATE1 rs2289669 was asso-
ciated with hematological toxicity and overall toxicity 
during platinum-based chemotherapy. A allele carriers 
had poor tolerance to hematological toxicity and over-
all toxicity in the recessive model. Furthermore, NSCLC 
patients >55  years old in the recessive model, patients 
who were smokers in the additive and dominant models, 
and male patients in the additive and recessive models 
showed associations with overall toxicity in platinum-
based chemotherapy.
ABCC2 is an efflux transporter expressed in the bile 

canalicular membrane, and this protein plays a pri-
mary role in the metabolism of many chemotherapeu-
tic agents [23]. ABCC2 expression is present in many 

tumor tissues and may lead to multidrug resistance 
[18]. In 1999, it was found that ABCC2 modulated 
cisplatin resistance through glutathione transport; 
a mutation in ABCC2 could thus highly influence 
the sensitivity to cisplatin [24]. In the present study, 
ABCC2 rs717620 was demonstrated to be associated 
with the response to platinum-based chemotherapy. 
Patients who carried the A allele of the rs2289669 poly-
morphism had better tolerance to hematological toxic-
ity. Furthermore, we found that the ABCC2 rs717620 
polymorphism increased the sensitivity to platinum 
in patients diagnosed with adenocarcinoma, smoker 
patients, and male patients.

It should be noted that some previous studies reported 
results that are different from our present investiga-
tion. For example, one study showed no association 
between MATE1 rs2289669 and platinum toxicity. 
ABCC2 rs717620 had also been found to be moderately 
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associated with a poor response to chemotherapy, which 
was opposite to our results [15]. Although the detailed 
reasons for these conflicting results remain unknown, 
we speculate that these inconsistencies maybe due to 
small sample sizes and different ethnic populations. 
In addition, when we calculated the P values for all the 
SNPs associated with toxicity and response with a false 
detection rate correction, no SNPs had a statistically sig-
nificant association. Therefore, to obtain a more solid 
conclusion, independent replication studies with larger 
sample sizes should be performed in the future to vali-
date our findings.

Conclusions
Our findings showed that, among Chinese NSCLC 
patients, carriers of the G allele of OCT2 rs316019 had 
better toxicity tolerance, whereas carriers of the A allele 
of MATE1 rs2289669 had poor toxicity tolerance, and 
carriers of the A allele of ABCC2 rs717620 responded 
better to platinum-based chemotherapy. These SNPs are 
potential clinical markers for predicting the response to 
platinum-based chemotherapy in NSCLC patients. How-
ever, further studies with a larger sample size are war-
ranted to validate these findings.

Table 4  Associations of seven SNPs with platinum-based chemotherapy response in 395 NSCLC patients

OCT2 organic cation transporter 2, ABCB1 ATP-binding cassette subfamily B member 1, ABCC2 ATP-binding cassette subfamily C member 2, MATE1 multidrug and toxin 
extrusion 1

Gene SNP Genotype Response

Sensitive [cases 
(%)]

Resistant [cases 
(%)]

Additive model Dominant model Recessive model

OR (95% CI) P OR (95% CI) P OR (95% CI) P

Total 115 280

OCT2

 rs316003 CC 5 (4.3) 13 (4.6) 1.00 (0.68–1.47) 0.992 1.01 (0.63–1.60) 0.984 0.96 (0.33–2.81) 0.939

CT 38 (33.0) 93 (33.2)

TT 65 (56.5) 166 (59.3)

 rs316019 TT 2 (1.7) 7 (2.5) 1.08 (0.69–1.69) 0.741 1.05 (0.63–1.75) 0.840 1.51 (0.30–7.51) 0.616

GT 27 (23.5) 68 (24.3)

GG 79 (68.7) 197 (70.4)

ABCB1

 rs1045642 TT 10 (8.7) 45 (16.1) 1.18 (0.85–1.65) 0.323 1.05 (0.66–1.66) 0.834 1.84 (0.89–3.83) 0.102

CT 57 (49.6) 129 (46.1)

CC 45 (39.1) 103 (36.8)

ABCC2

 rs717620 AA 3 (2.6) 9 (3.2) 0.64 (0.43–0.96) 0.031 0.54 (0.34–0.86) 0.010 1.22 (0.32–4.68) 0.772

AG 46 (40.0) 72 (25.7)

GG 62 (53.9) 186 (66.4)

 rs2273697 AA 1 (0.9) 1 (0.4) 1.29 (0.73–2.28) 0.391 1.35 (0.74–2.47) 0.328 0.59 (0.04–9.55) 0.709

AG 16 (13.9) 52 (18.6)

GG 97 (84.3) 227 (81.1)

 rs3740066 AA 4 (3.5) 10 (3.6) 0.80 (0.54–1.19) 0.271 0.72 (0.45–1.14) 0.162 1.18 (0.36–3.90) 0.790

AG 42 (36.5) 81 (28.9)

GG 65 (56.5) 181 (64.6)

MATE1

 rs2289669 AA 20 (17.4) 65 (23.2) 1.30 (0.93–1.81) 0.126 1.32 (0.79–2.21) 0.293 1.51 (0.86–2.66) 0.155

AG 58 (50.4) 140 (50.0)

GG 30 (26.1) 62 (22.1)
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