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Abstract

duct epithelial E6E7 cells transfected with K-ras®'?Y

Introduction: Oncogenic activation of the K-ras gene occurs in >90% of pancreatic ductal carcinoma and plays a critical
role in the pathogenesis of this malignancy. Increase of reactive oxygen species (ROS) has also been observed in a wide
spectrum of cancers. This study aimed to investigate the mechanistic association between K-ras—induced transformation
and increased ROS stress and its therapeutic implications in pancreatic cancer.

Methods: ROS level, NADPH oxidase (NOX) activity and expression, and cell invasion were examined in human pancreatic
compared with parental E6E7 cells. The cytotoxic effect and antitumor
effect of capsaicin, a NOX inhibitor, were also tested in vitro and in vivo.

Results: K-ras transfection caused activation of the membrane-associated redox enzyme NOX and elevated ROS
generation through the phosphatidylinositol 3'-kinase (PI13K) pathway. Importantly, capsaicin preferentially inhibited the
enzyme activity of NOX and induced severe ROS accumulation in K-ras-transformed cells compared with parental E6E7
cells. Furthermore, capsaicin effectively inhibited cell proliferation, prevented invasiveness of K-ras—transformed pancreatic
cancer cells, and caused minimum toxicity to parental E6E7 cells. In vivo, capsaicin exhibited antitumor activity against
pancreatic cancer and showed oxidative damage to the xenograft tumor cells.

Conclusions: K-ras oncogenic signaling causes increased ROS stress through NOX, and abnormal ROS stress can
selectively kill tumor cells by using NOX inhibitors. Our study provides a basis for developing a novel therapeutic strategy
to effectively kill K-ras—transformed cells through a redox-mediated mechanism.
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Background

Oncogenic mutations of the KRAS gene are present in
>90% of pancreatic ductal carcinoma [1], which is an ag-
gressive and deadly cancer [2]. Since pancreatic ductal
carcinoma is unusually resistant to chemotherapy and ra-
diation therapy and little progress has been achieved in
the treatment of pancreatic cancer, surgical resection re-
mains to be the only potentially curative therapy. The po-
tential discoveries of pancreatic cancer therapeutics rely
on advances in our understanding of the biology of the
disease. Genetic lesions, including mutations of V-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog (KRAS),
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cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor
protein 53 (7P53), breast cancer 2 (BRCA2), and mothers
against decapentaplegic homolog 4 (SMD4/DPC4), have
been thought to contribute to the evolution of pancre-
atic adenocarcinoma [3]. Activating KRAS mutations
are found in more than 90% of pancreatic adenocarcin-
omas and are highly associated with disease progression
due to the activation of several effector pathways that
induce cell proliferation, survival, invasion, and meta-
bolic alterations [3-5]. Given the almost ubiquitous oc-
currence of K-ras mutations and its critical role in the
development of pancreatic cancer, the ideal therapeutic
strategy would be the direct blocking of KRAS onco-
genic signaling. However, an effective small-molecule
inhibitor of KRAS has yet to be identified [6].

Whereas the major effector proteins, such as Raf kin-
ase, phosphatidylinositol 3'-kinase (PI3K), and RalGDS,
play vital roles in Ras transformation, accumulating
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evidence has shown that reactive oxygen species (ROS)
may serve as a messenger of Ras in signaling transduc-
tion pathways and that moderate increases in ROS levels
may promote cell proliferation and contribute to cancer
development [7,8]. Therefore, ROS appear to be an im-
portant downstream effector of Ras transformation in can-
cer cells. The role of the membrane-associated NADPH
oxidase (NOX) in non-mitochondrial formation of ROS
has been observed in various studies [9-11]. The activation
or up-regulation of NOX has also been shown to play an
important role in maintaining the cancer phenotype
through stimulating the production of ROS [12-14]. The
previous findings prompted us to investigate whether K-
ras oncogenic signaling increases ROS levels through the
activation of NOX and whether modulators of NOX could
provide a potential therapeutic opportunity for pancreatic
cancer through a redox-mediated mechanism. Capsaicin
(8-methyl-N-vanillyl-6-nonenamide), a natural compound,
is a pungent ingredient found in a variety of red peppers
and has been shown to inhibit cell surface NOX activity
[15,16]. In the current study, we aimed to determine the
mechanistic role of NOX in mediating ROS generation in-
duced by K-ras oncogenic signaling. We compared ROS
production as well as the expressions and activities of
NOX in parental human pancreatic duct epithelial E6GE7
cells and K-ras—transformed E6E7 cells, which have pre-
viously been shown to be highly tumorigenic [17]. We
also examined the effect of capsaicin on parental and
K-ras—transformed E6E7 cells. Importantly, the role of
NOX-derived ROS generation in capsaicin-induced cyto-
toxicity was tested in K-ras—transformed E6E7 cells in
comparison with parental E6E7 cells.

Methods

Antibodies and reagents

The following antibodies were used for immunoblotting
analysis using standard Western blotting procedures:
superoxide dismutase 1 (SOD1), superoxide dismutase 2
(SOD2), p22phox, and p-p40phox were purchased from
Santa Cruz Biotechnology, Dallas, TX, USA; p-actin,
tublin, diphenyleneiodonium chloride (DPI), and capsaicin
were purchased from Sigma-Aldrich, St. Louis, MS, USA.

Cell culture

The parental E6E7 cell line and K-ras—transformed cell
line, which had been established by transfecting the im-
mortalized human pancreatic duct epithelial E6E7 cell
line with  K-rasS'?Y, were kindly provided by Dr. Paul
Chiao from The University of Texas, MD Anderson
Cancer Center and were cultured as reported previ-
ously [17]. Primary pancreatic cancer cell lines, includ-
ing AsPC-1, Capan-1, and Panc-1, were obtained from
American Type Culture Collection (ATCC) and cultured
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in Dulbecco’s Modified Eagle’s medium (DMEM) with
10% Fetal bovine serum (FBS).

Quantitative real-time Polymerase Chain Reaction (PCR)
analysis

The sequences for the genes to be measured are as
follows: 5'-GGAGTTTCAAGATGCGTGGAAACTA-3’
(sense) and 5'-GCCAGACTCAGAGTTGGAGATGCT-3’
(antisense) for NOX2, 5'-CAAGCCGTGACCAAGGA
CACCTG-3" (sense) and 5-CACACAGGACATCCACC
GTGTC-3" (antisense) for NOXAI. Real-time PCR analysis
was performed by using the SYBR Premix Ex Taq II kit
(TaKaRa Bio, Otsu, Shiga, Japan) and Real-Time PCR
Detection Systems (Bio-Rad, Hercules, CA, USA).

MTT assay

Cell growth was determined using MTT reagent in
96-well plates. After incubation, 20 pL MTT reagent
was added to each well and incubated for an additional
4 hours and then the supernatant was removed. The cell
pellets were dissolved in 200 uL. DMSO. Absorbance
was determined using a MultiSkan plate reader
(Thermo, Helsinki, USA) at a wavelength of 570 nm.

Colony formation assay

Cells were seeded in six-well plates and cultured for about
2 weeks. Colonies were fixed with methanol for 10 minutes
and stained with crystal violet solution (Beyotime, Jiangsu,
China) for 30 minutes. All the experiment was repeated 3
times.

NOX activity

Cells were suspended in lysis buffer containing 20 mmol/
L HEPES, 10 mmol/L KCl, 1.5 mmol/L MgCl,, 1 mmol/L
EDTA,1 mmol/L EGTA, 100 mmol/L sucrose, and a cock-
tail of protease inhibitors. After homogenization, the sam-
ples were centrifuged at 800g at 4°C for 5 minutes to
pellet unbroken cells and nuclei. The supernatants were
centrifuged at 100,000 ¢ for 30 minutes to separate the
membrane fraction (pellet) and the cytosolic fraction
(supernatant). NOX activity was measured by lucigenin-
derived chemiluminescence, with 100 pmol/L NADPH or
NADH as substrate, 50 pmol/L lucigenin, and 25 pg of
cell membrane proteins. Chemiluminescence was mea-
sured using a luminometer (Turner Designs, Sunnyvale,
CA, USA) for 1 minute. The signal was normalized and
expressed as arbitrary light units per microgram protein
per minute.

Rac activity

The Rac activity assay was performed using the Rac-GEF
(guanine-nucleotide exchange factors) Assay Kit (Cell
Biolabs, San Diego, CA, USA). Briefly, cells were washed in
cold PBS, lysed in 1x Assay/Lysis Buffer, and centrifuged
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for 10 minutes at 14,000 g at 4°C. Aliquots from the super-
natant were used for determining protein concentration.
The supernatant was incubated with nucleotide-free Racl
G15A agarose beads to pull down the active form of Rac-
GEFs. The beads were washed 3 times with 1x Assay/Lysis
Buffer, and the bound proteins were eluted. The active Rac
proteins were detected by Western blotting using an anti-
Rac-GEF antibody (Tiam1).

Invasion assay

Invasion assays were performed with BD BioCoat
Matrigel Invasion Chambers (BD Biosciences, San Jose,
CA, USA). Pre-coated filter Matrigel inserts were re-
hydrated with 0.5 mL of PBS for 2 hours in humidified
tissue culture incubator at 37°C in 5% CO, atmosphere.
After rehydration, PBS was removed. Then, 1 x 10° par-
ental or K-ras—transformed E6E7 cells and Capan-1,
AsPC-1, Panc-1 cells in 0.5 mL of supplement-free
medium with or without 10 pmol/L capsaicin were
seeded onto the upper part of each chamber insert, and
the 24-well plates were filled with 0.5 mL of their cul-
ture medium. Following incubation for 16 hours, non-
invaded cells on the upper surface of the insert were
wiped off with a cotton swab, and the cells that had mi-
grated onto the lower surface of the filter, were fixed and
stained with the Hema 3 Manual Staining System (Fisher
Scientific, Pittsburgh, PA, USA) containing a fixative and
2 stain solutions. The inserts were air dried and photo-
graphed. Invasiveness was determined by counting cells in
3 microscopic fields (x100) per well, and the extent of in-
vasion was expressed as an average number of cells per
microscopic field.

Measurement of ROS production and ATP generation
Cells were stained with 100 ng/mL hydroethidine (HET)
(Invitrogen, Carlsbad, CA, USA) and 5 umol/L DCF-DA
(Invitrogen, Carlsbad, CA, USA) for 60 minutes before
the measurement of superoxide and hydrogen peroxide
using a FACScan flow cytometer (Becton Dickinson,
Franklin Lakes, NJ, USA). Cellular ATP generation was
measured using CellTiter-Glo Luminescent Cell Viability
Assay kit (Promega, Wisconsin, USA) according to man-
ufacturer’s recommendations.

Animal study

Four-week-old, BALB/c male nude mice were purchased
from Medical Experimental Animal Center of Guangdong
Province, China. A total of 2 x 10° AsPC-1 cells were inoc-
ulated into the right flanks of the mice by subcutaneous
injection. When the volume of tumors reached 100 mm?,
the mice were randomly divided into 2 groups of 10 mice
each. The treatment group received 15 mg/kg capsaicin in
0.9% sodium chloride solution (intraperitoneal injection, 3
times per week). The control group received equal volume
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of 0.9% sodium chloride solution by intraperitoneal
injection. Five weeks after inoculation, all mice were
euthanized and the tumor weights were measured. Ani-
mal experiments were approved by Institutional Animal
Care and Use Committee of Sun Yat-sen University
Cancer Center and performed under the guidelines of the
Care and Use of Laboratory Animals (NIH publications
Nos. 80-23, revised 1996).

Immunohistochemistry and TUNEL assay

Representative tumor tissues were sectioned and
embedded in paraffin. The slides were then incubated
with the primary antibody (mouse anti—8-oxoguanine
monoclonal antibody, Abcam, Cambridge, UK) at 1:200
dilution overnight in a humidified chamber at 4°C. The
slides were washed and incubated with horseradish
peroxidase-conjugated secondary antibody (Envision
Detection Kit, Dako, Glostrup, Denmark) at 37°C for
30 minutes. Finally, the samples were stained with 3,
3-diaminobenzidine (DAB) solution and counterstained
with hematoxylin and eosin (HE). Tumor cell death in-
duced by capsaicin was detected by TUNEL assay with the
In Situ Cell Death Detection Kit (Roche, Indianapolis, IN,
USA) according to manufacturer’s instructions.

Statistical analysis

Statistical significant differences were evaluated by
using Student’s ¢ test (Prism GraphPad, San Diego,
CA, USA). The Kolmogorov-Smirnov test (Cell Quest
Pro software, Becton-Dickinson, San Jose, CA, USA) was
used to evaluate the significant difference between control
and treatment groups in flow cytometry analysis. A P value
of <0.05 was considered statistically significant.

Results

Oncogenic transformation induced by K-ras increased
ROS generation

To test the hypothesis that K-ras transformation
activates NOX and renders the transformed cells
vulnerable to NOX inhibition through further ROS
stress, we first evaluated the effect of oncogenic K-ras
on ROS production. As shown in Figure 1A and B,
K-ras—transformed cells exhibited 2-fold and 5-fold
increases in superoxide (O,”) and hydrogen peroxide
(H,O,) production compared with parental E6E7 cells.
The levels of both SOD1 and SOD2, 2 major forms of
SOD, were significantly up-regulated in K-ras—transformed
cells, indicating the increased levels of cellular ROS stress
in the transformed cells (Figure 1C).

As NOX has been reported to be a multi-subunit
redox enzyme that generates non-mitochondrial source
of ROS [10,18], in the current study, we examined the
effect of K-ras transformation on NOX expression and en-
zyme activity. The mRNA levels of 2 members of the NOX
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Figure 1 Increase in oxidative stress and activation of NOX in K-ras-transformed pancreatic cancer cells. A, comparison of basal
superoxide levels in parental (E6E7) and K-ras—transformed E6E7 cells (K-ras). K-ras-transformed cells exhibit a 2-fold increase in superoxide
generation detected by fluorescence probe HET. B, comparison of basal hydrogen peroxide levels in parental and K-ras—transformed E6E7 cells.
K-ras-transformed cells exhibit a 3-fold increase in hydrogen peroxide generation detected by fluorescence probe DCF-DA. C, the levels of
CuZnSOD (SOD1) and MnSOD (SOD2) were both up-regulated, as assessed by Western blotting analysis. D, total mRNA levels of NOX2 and
NOXA1 measured by real-time polymerase chain reaction (PCR). E, the levels of p22phox and phosphorylated p40phox were both up-regulated,
as assessed by Western blotting analysis. F, NOX activity was measured in the presence of 100 umol/L NADPH or NADH by lucigenin-derived
chemiluminescence in 50 pg of membrane fraction from parental and K-ras—transformed E6E7 cells. The values are shown as the mean + standard
deviation (SD). *, P < 0.05; **, P < 0.01. NOX, NADPH oxidase; HET, hydroethidine.

family, NOX2 and NOXA1, were up-regulated by more
than 3-fold in K-ras—transformed cells (Figure 1D). The
activation of the NOX complex requires proper
assembly of the plasma membrane-binding and cyto-
solic protein components, and the activation is initiated
by phosphorylation of the cytosolic complex [19,20].
Western blotting analysis showed that p22phox, the
major membrane-binding component, was markedly
increased in the transformed cells. Importantly, the level
of p40phox, the phosphorylated form of the cytosolic
subunit, was also up-regulated in the transformed cells
(Figure 1E). The K-ras—transformed cells also exhibited a
more than 2-fold increase in the enzyme activity of NOX
(Figure 1F) compared with parental E6E7 cells, indicating
that NOX was indeed activated in the transformed cells.

Capsaicin preferentially induced ROS production and

selectively inhibited NOX activity in K-ras-transformed cells
The significant difference between parental and K-ras—
transformed cells in NOX expression and enzyme activ-
ity prompted us to compare the effects of a NOX inhibi-
tor in these 2 cell lines. Capsaicin has been reported to
target NOX and induce cell death in various cancers,
including hepatoma and leukemia [16,21]. In the
current study, the cellular response to capsaicin revealed
a striking selective activity against K-ras—transformed
cells, compared with parental E6E7 cells. As shown in
Figure 2A, 1 pmol/L capsaicin induced an approximately
3-fold increase in ROS production (superoxide) in K-ras—
transformed cells after 12 hours of treatment. In contrast,
treatment with the same concentration of capsaicin did
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Figure 2 Capsaicin caused preferential reactive oxygen species (ROS) accumulation and selectively inhibited NOX activity in K-ras-
transformed E6E7 cells. A, incubation with 1 pmol/L capsaicin for 12 hours caused tremendous ROS accumulation in K-ras-transformed cells

as compared with untreated K-ras—transformed cells (superoxide mean level, 16 vs. 53). B, the same treatment caused a minimum effect on ROS
production in E6E7 cells as compared with untreated parental E6E7 cells (superoxide mean level, 8 vs. 9). C, the dose-dependent increase in
superoxide generation induced by capsaicin in parental and K-ras—transformed E6E7 cells. D, treatment with 10 pmol/L capsaicin caused a
significant increase in both SOD1 and SOD2 in K-ras-transformed cells. E, total cell lysates of untreated parental E6E6 cells, untreated K-ras—transformed
E6E6 cells, and K-ras—transformed E6E6 cells treated with 10 umol/L capsaicin for 12 hours were pulled down with nucleotide-free Racl G15A agarose
beads. The precipitated active Rac was detected by anti-Rac-GEF antibody. F, E6E7 and K-ras—transformed cells were pretreated with 10 umol/L
capsaicin for 12 hours. NOX activity was measured in the presence of 100 pmol/L NADPH by lucigenin-derived chemiluminescence in the
plasma membrane fraction of parental and K-ras—transformed E6E7 cells, with or without capsaicin treatment. The values are shown as the
mean £ SD. **, P<0.01.

not cause any detectable increase in ROS in parental EGE7
cells (Figure 2B). Quantitative analysis of various concen-
trations of capsaicin treatment further demonstrated the se-
lective induction of ROS generation in K-ras—transformed
cells (Figure 2C). Western blotting analysis showed that
12 to 72 hours after the treatment with 10 pmol/L

capsaicin, the expression of both SOD1 and SOD2 was
significantly increased in K-ras—transformed cells, indi-
cating the sustained ROS stress induced by capsaicin
(Figure 2D).

To determine the biochemical basis for the selective effect
of capsaicin on the context of ROS generation in
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K-ras—transformed cells, NOX activity was assessed before  the level of functionally active form of Rac was up-regulated
and after capsaicin treatment. NOX is a multi-subunit in K-ras—transformed cells. Importantly, the activation of
enzyme, and the regulatory components, p40phox, Rac was significantly inhibited after 12 hours of treatment
p47phox, and p67phox, as well as the small GTPase, Rac,  with10 pumol/L capsaicin (Figure 2E). In accordance with
are localized in the cytosol during the resting state [9]. the inhibition of active Rac by capsaicin, NOX activity in
Upon activation, GDP is exchanged for GTD, and Rac disso-  K-ras—transformed cells was also suppressed by approxi-
ciates from the cytosolic complex, leading to the activation — mately 50% when they were treated with 10 pmol/L
of NOX activity [9]. Western blotting analysis showed that  capsaicin for 12 hours (Figure 2F).

A B
Control ici
X100 X400 MTT assay
i‘ 120
[ EGET
E 100- 0 K-ras
% 80
*
2 o T
i
% 20 *
@ o
1] 1 5 10 50
Capsaicin concentration (pmol/L)
C D
100 nmol/L DPI
r§- 120- B 120- -» Fibroblast
s % = AsPC-1
1004 + Capan-1
5 5 1001 -+ Panc-1
® 804 g
c § %0
£ “ 5
[ R
& 5
o
E fut 6 12 18 2 <% 6 12 18 2
Time (h) Time (h)
E F
- Invasion assay of
= 100, K-ras-transformed cells
-, E 80- L
Control 2
E 60
=
T E 40
Capsaicin - ok
. - -% 20_
g
£ o0

Control Capsaicin

Figure 3 Selective killing and invasion inhibition of K-ras-transformed cells by capsaicin. A, parental and K-ras-transformed E6E7 cells
were incubated with or without 10 umol/L capsaicin for 4 days in chamber slides. The cells were then stained with hematoxylin and eosin, which
show the selective cytotoxicity of capsaicin to K-ras—transformed pancreatic cancer cells (magnification, x100 and x 400). B, inhibition of cell
proliferation by capsaicin in parental and K-ras—transformed E6E7 cells. Cell growth inhibition was measured by long-term MTT assay (mean + SD
of 3 experiments; *P < 0.05). C, measurement of ATP generation after treatment of 1 umol/L diphenyleneiodonium (DPI) in parental and K-ras—
transformed E6E7 cells at various time points as indicated (mean + SD of 3 experiments). D, measurement results of ATP generation after
treatment of 100 nmol/L DPI in normal fibroblasts and naturally occurring pancreatic cancer cells at various time points as indicated (mean + SD
of 3 experiments). E, parental and K-ras—transformed EGE7 cells were seeded onto the chamber insert with a layer of Matrigel matrix, with or
without 10 umol/L capsaicin. Then, 24 hour later, the cells that had digested the Matrigel and migrated to the lower surface of the insert were
stained and photographed (magnification, x100). F, the invasion of K-ras-transformed cells was assessed by counting the number of cells that
had migrated onto the lower surface of the insert. The results are presented as the mean + SD of the numbers from 3 microscopic fields
(magnification, x100). **, P < 0.01.
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Capsaicin induced selective cytotoxicity in
K-ras-transformed cells
The significant difference between parental and K-ras—
transformed E6E7 cells in response to capsaicin-
induced ROS accumulation prompted us to compare the
cytotoxic effect of this compound in these 2 cell lines. HE
staining was used to compare the morphology of these
cells before and after treatment. As shown in Figure 3A,
4 days of treatment with 10 umol/L capsaicin showed
minimal effects on parental E6E7 cells. In sharp contrast,
after identical treatment, the cell numbers decreased and
drastic morphological alterations presented in K-ras—
transformed cells as compared with the untreated control
cells. Because parental E6E7 cells could not form colonies,
an adapted MTT assay was used to compare the effect of
capsaicin on long-term cell proliferation in parental and
K-ras—transformed E6E7 cells. As shown in Figure 3B,
capsaicin exhibited greater inhibition on K-ras—trans-
formed cells after a 14-day period of incubation. To
further test the hypothesis that K-ras transformation
activates NOX and renders the transformed cells vulner-
able to NOX inhibitor, DPI, a potent and specific inhibitor
of flavoproteins including NAD(P)H oxidase [22], in
pancreatic cancer cells and parental E6E7 cells was com-
pared. As shown in Figure 3C and D, ATP generation
levels in K-ras—transformed E6E7 cells and other pancre-
atic cancer cells were substantially decreased in a time-
dependent manner after treatment with 1 pmol/L and
100 nmol/L DPI, and reached approximately 60%
inhibition 24 hours after the treatment. In contrast, the
same treatment showed no detectable cytotoxic effect on
fibroblasts and only 20% inhibition on parental E6E7 cells.
Because pancreatic cancer is also known to be an
aggressive cancer with enhanced invasiveness, the ef-
fects of capsaicin on cell migration and invasion were
also tested in parental and K-ras—transformed E6E7
cells. The invasion measurement was performed with
BD chamber inserts coated with a layer of Matrigel
matrix. The invasive ability was measured by counting
the number of cells that digested the Matrigel and
passed through the filter membrane. Consistently, the
number of K-ras—transformed cells with invasive
ability was larger than that of parentalE6E7 cells
(Figure 3E). After 24 hours of treatment with
10 umol/L capsaicin, the invasive ability of K-ras—
transformed E6E7 cells was significantly inhibited
(Figure 3E). The treatment of capsaicin for 24 h
inhibited the invasion of K-ras—transformed cells by
more than 70% (P<0.01) (Figure 3F). Taken together,
capsaicin not only showed selective cytotoxicity but
also inhibited invasion in malignant cells, either
K-ras—transformed pancreatic cancer cells or primary
pancreatic cancer cells, whereas both effects were not
shown in parental E6E7 cells.
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Capsaicin effectively suppressed the proliferation of
pancreatic cancer cells and exhibited antitumor activity

in vivo

The selective cytotoxicity induced by capsaicin in K-ras—
transformed cells prompted us to further test its effect
in cancer cell lines. The pancreatic cancer cell line AsPC-
1 is known to harbor a K-ras mutation at codon 12 [23].
As shown in Figure 4A, capsaicin was effective in inhibit-
ing the proliferation of AsPC-1 cells in a colony formation
assay, with the half maximal inhibitory concentration
(ICs0) value of approximately 10 umol/L. Approximately
75% of the proliferation capacity of AsPC-1 cells
was inhibited when treated with 30 pmol/L capsaicin
(Figure 4B). Interestingly, after 24 hours of treatment
with 30 pmol/L capsaicin, a significant accumulation of
superoxide was shown in the pancreatic cancer AsPC-1,
Panc-1, and Capan-1 cells (Figure 4C). The invasion
assay carried out with Capan-1, Panc-1, and AsPC-1
cells revealed that the motility of these pancreatic can-
cer cells was also substantially inhibited by pretreatment
with 30 pmol/L capsaicin for 24 hours (Figure 4D).

We further detected the activity of capsaicin against
pancreatic cancer growth in vivo. Capsaicin significantly
impaired the tumor growth of AsPC-1 cell xenografts in
nude mice, as evidenced by a decrease in tumor volume
(P<0.05) and tumor weight in the treatment group
(Figure 5A and B). However, the treatment of 15 mg/kg
capsaicin did not cause cany toxic effects on the mice,
as the mouse weights were not affected by the treatment
(data not shown). Twenty-five days after cell inocula-
tion, the average tumor weight in the control group was
403 mg, whereas that in the treatment group was 188 mg
(P<0.01) (Figure 5C). The tumor sections were subjected
to TUNEL assay and immunostaining for 8-oxoguanine to
detect DNA fragmentation and DNA lesions resulting from
ROS, respectively [24]. The positive staining of TUNEL and
8-oxoguanine in the treatment group revealed that oxi-
dative damage was induced by capsaicin in AsPC-1cells
(Figure 5D). No severe oxidative damage was observed
in the control group. Together, these data suggest that
capsaicin inhibited pancreatic cancer growth likely through
a redox-mediated mechanism.

Discussion
The association between K-ras mutation and pancreatic
cancer has been known for decades. An increase in oxi-
dative stress in cancer cells and its association with can-
cer progression has also long been recognized. However,
the mechanistic link between K-ras transformation and
intrinsic oxidative stress in pancreatic cancer and its
therapeutic implications remain to be investigated.
Using isogenic cell lines, we showed here that com-
pared with the parental human pancreatic duct epithelial
E6E7 cells, K-ras—transformed pancreatic cancer cells
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stained, and photographed. B, quantitative analysis of cytotoxic activity of capsaicin in AsPC-1 cells analyzed by colony formation assay. The data
are shown as the mean + SD of 3 experiments. C, the treatment with 30 pmol/L capsaicin for 24 hours induced a 2- to 3-fold increase of cellular
superoxide in naturally occurring pancreatic cancer Capan-1, Panc-1, and AsPC-1 cells. D, effect of capsaicin on the invasion of naturally occurring
pancreatic cancer cells analyzed by BD BioCoat Chamber as described in the Methods section. Cells were seeded onto the chamber insert with or
without 30 umol/L capsaicin treatment. After 24 hours of treatment, cells that had migrated to the lower surface of the insert were subjected to

staining and photographed (magnification, x400). Ctrl, control.

exhibited a substantial increase in basal ROS levels, includ-
ing both O,” and H,0,, indicating that the primary ele-
vated generation of O,  may lead to an increase in H,O,
due to intracellular conversion. Accordingly, we found a
significant up-regulation of both SOD1 and SOD2 in the
K-ras—transformed cells compared with parental E6E7
cells.

It is noteworthy that NOX, the membrane-binding
ROS-generating enzyme, has also been suggested to be

involved in cell transformation [25,26]. It is known that
the activation of NOX requires the proper assembly of mul-
tiple regulatory components, including p22phox, ph47phox,
p40phox, and p67phox, and the small GTPase, Rac
[10,19]. In the current study, NOX expression and enzyme
activity were consistently up-regulated in K-ras—trans-
formed pancreatic cancer cells. Previous studies have
indicated that the triggers of NOX regulatory subunits in-
volved protein kinases, lipid-metabolizing enzymes, and
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groups were measured and compared at the indicated time points and are presented as the mean volume £ SD (P < 0.05). B, comparison of
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measured. Error bars indicate SD (P < 0.01, n=10). D, tissue slices of AsPC-1 tumors with or without capsaicin treatment were subjected to TUNEL
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guanine-nucleotide exchange proteins that activate Rac
[10]. It has also been known that phosphatidylinositol
(3,4,5)-trisphosphate (PIP3), the lipid product of PI3K, ac-
tivates Rac by binding to the pleckstrin homology (PH)
domain of GEFE, which mediates the exchange of Rac-GDP
for Rac-GTP [27,28]. Because PI3K is one major down-
stream effector of K-ras, we postulated that K-ras induces
the constitutive activation of NOX through the PI3K/
PIP3/GEF/Rac pathway (Figure 6). Accordingly, we found
that the levels of both phosphorylated p40phox and active
GTP-binding Rac were significantly up-regulated in
K-ras—transformed E6E7 cells. Interestingly, the binding
of PtdIns(3)P, a product of PI3K, to the phox homology
(PX) domain of p40phox was previously reported to lead
to the stimulation of ROS formation [29], indicating that
PI3K could also mediate the Ras-induced activation of
NOX through p40phox.

Therapeutic selectivity, or the preferential killing of
cancer cells without significant toxicity to normal cells,
is an important consideration in cancer chemotherapy.
In the current study, the constitutive activation of NOX

PIP3 — p4aOphox |

| | capsaicin |
GEF | e Cell death

l‘. * \lt / Cell

| Rac-GTP = NOX activation == ROS — 4o/ eoimarion

Figure 6 Proposed model of the selective killing of K-ras-
transformed cells by NOX inhibition. K-ras transformation causes
the activation of the downstream effector, phosphatidylinositol
3'-kinase (PI3K). Phosphatidylinositol (3,4,5)-trisphosphate (PIP3),

the lipid product of a PI3K-catalyzed reaction, enhances the
guanine-nucleotide exchange factor (GEF) activity that mediates the
exchange of Rac-GDP for Rac-GTP, and provides the lipid necessary
for NOX subunit (p40phox) binding upon the translocation to the
membrane, therefore causing the activation of NOX. NOX-induced
ROS production stimulates cell proliferation and contributes to
tumor progression. NOX inhibitor targets the activated NOX and
causes excessive ROS generation, leading to cancer cell death. +,
activation by the upstream effectors.
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was observed in K-ras—transformed pancreatic cancer
cells. The deregulation and overexpression of the NOX
family members have been reported in a variety of malig-
nancies, and certain subunits seem to be associated with
K-ras transformation [4,13,30]. Interestingly, we recently
reported an up-regulation of p22phox in clinical pancre-
atic cancer specimens [31], and Hiraga et al. [32] reported
that NOX4-derived ROS signaling contributes to TGF-—
induced epithelial-mesenchymal transition (EMT) in pan-
creatic cancer cells. Therefore, NAD(P)H oxidase may be
an attractive target for preferentially killing malignant cells
and is likely to have broad therapeutic implications. Cap-
saicin, a natural compound found in peppers, has been
found to interact with NOX and induce ROS generation
[15]. Our study revealed that capsaicin caused selective
cytotoxicity to K-ras—transformed cancer cells but mini-
mum effect on parental E6E7 cells. Capsaicin was also able
to inhibit the proliferation of primary pancreatic cancer
AsPC-1 cells. In addition, capsaicin was able to inhibit
invasion, the deadly feature of pancreatic cancer, in both
K-ras—transformed pancreatic cancer cells and primary
pancreatic cancer cell lines, Capan-1, Panc-1, and AsPC-1.
Importantly, capsaicin induced a tremendous accumula-
tion of ROS in K-ras—transformed cells compared with
parental E6E7 cells. The in vitro assay of NOX activity
showed that capsaicin preferentially inhibited NOX activ-
ity through the suppression of Rac, a NOX component, in
K-ras—transformed cells, whereas only having minimal ef-
fects on parental E6E7 cells. DPI, another NOX inhibitor,
also exhibited a selective depletion of ATP in K-ras—trans-
formed pancreatic cancer cells as well as primary pancre-
atic cancer cells. Furthermore, our animal study showed
that capsaicin has therapeutic activity in mice bearing
pancreatic cancer xenografts. Examination of the tumor
sections demonstrated the oxidative damage induced by
capsaicin and suggesting the role of ROS accumulation in
capsaicin-induced cell death.

Compared with normal cells, cancer cells are under
sustained oxidative stress due to the presence of con-
stant oncogenic signals and hence are highly dependent
on antioxidants to counterbalance ROS stress [33]. There-
fore, further oxidative insults, such as the exposure to
ROS-generating agents, could exhaust the cellular antioxi-
dant capacity and cause severe accumulation of ROS,
leading to cell death. In contrast, it is less likely to induce
such severe ROS stress in normal cells, due to their low
basal ROS levels. This biochemical difference between
normal and cancer cells may constitute a basis for modu-
lating cellular ROS as a strategy to selectively kill cancer
cells. Our study demonstrated the significant increase in
ROS in K-ras—transformed cells compared with parental
E6E7 cells. Importantly, capsaicin induced further ROS
accumulation in K-ras—transformed cells, but had little
effects on parental E6E7 cells. Consistently, capsaicin
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significantly inhibited the growth and invasion of K-ras—
transformed cells, whereas the identical concentration did
not show any toxicity on parental E6E7 cells.

Conclusions

In conclusion, our results demonstrated the up-regulation
and activation of NOX, the ROS-generating enzyme, by
K-ras transfection. Our study suggests that the intrinsic
oxidative stress associated with K-ras—induced oncogenic
transformation provides a basis for developing strategies
to specifically target pancreatic cancer cells through a
redox-mediated mechanism. Considering the frequent
mutation of K-ras in pancreatic cancer and its resist-
ance to many anticancer agents, targeting NOX may
have significant clinical implications and warrant fur-
ther investigation.
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