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Pathological transition as the arising 
mechanism for drug resistance in lung cancer
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Abstract 

Despite the tremendous efforts for improving therapeutics of lung cancer patients, its prognosis remains disappoint-
ing. This can be largely attributed to the lack of comprehensive understanding of drug resistance leading to insuf-
ficient development of effective therapeutics in clinic. Based on the current progresses of lung cancer research, we 
classify drug resistance mechanisms into three different levels: molecular, cellular and pathological level. All these 
three levels have significantly contributed to the acquisition and evolution of drug resistance in clinic. Our under-
standing on drug resistance mechanisms has begun to change the way of clinical practice and improve patient 
prognosis. In this review, we focus on discussing the pathological changes linking to drug resistance as this has been 
largely overlooked in the past decades.
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Background
Lung cancer can be classified into two main histological 
types: small cell lung cancer (SCLC) and non-small cell 
lung cancer (NSCLC). They account for approximately 
15% and 85% of all lung cancers, respectively [1]. NSCLC 
can be further divided into three subtypes, namely lung 
adenocarcinoma (ADC), squamous cell carcinoma (SCC) 
and large cell carcinoma (LCC). These subtypes harbor 
different features, with distinct gene expression pro-
files [2] as well as lineage-specific biomarkers [3]. For 
example, lung ADC commonly express thyroid tran-
scription factor-1 (TTF1, also known as NKX2-1) [4, 
5], a p53-homologous nuclear protein mainly involved 
in basal cell commitment. LCC, as a pathologically het-
erogeneous entity which might represent solid ADC or 
non-keratinizing SCC, have no well-established bio-
markers, yet [6]. In contrast to NSCLC, SCLC frequently 
express neuroendocrine markers, such as achaete-scute 

homologue 1 (ASCL1, also known as ASH1), neural cell 
adhesion molecule (NCAM) and synaptophysin (SYP) 
[7]. Lung ADC is frequently found at distal bronchioles 
[8], whereas SCC is often observed in more proximal air-
ways [8]. Most lung ADC are considered as originating 
from alveolar type II (AT II) cells, club cells, or bronchial-
alveolar stem cells (BASCs) [9], whereas SCC is observed 
at more proximal airway [6]. Most lung ADC are con-
sidered as originating from alveolar type II (AT II) cells, 
club cells, or bronchio-alveolar stem cells (BASCs) [7], 
whereas, lung SCC are mainly derived from basal cells 
located underneath trachea or bronchus epithelia [7]. 
SCLC arises from pulmonary neuro-endocrine (NE) cells 
and often spread along bronchi in a submucosal and cir-
cumferential fashion [8].

Despite of persistent medical efforts in last decades, 
lung cancer prognosis still remains disappointing, with 
a 5-year survival rate of approximately 15% [9]. This is 
in part attributed to the acquisition of early drug resist-
ance. Understanding of drug resistance mechanisms 
hopefully improves therapeutic strategies and eventu-
ally changes clinical practice. We classify drug resist-
ance mechanisms into three different levels: molecular, 
cellular and pathological level (Fig.  1). Although these 
three are closely linked with each other, changes 
in molecular level might occur in tumor initiation 
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and development prior to those in the other two lev-
els, which enable an early diagnosis with the usage of 
potential biomarkers. Previous studies have paid exten-
sive attentions to the molecular and cellular level. In 
this review, we mainly focus on the pathological level 
which is largely unappreciated previously.

Drug resistance mechanisms at molecular 
and cellular level
Molecular changes are frequently detected in relapsed 
patients after clinical treatment including chemotherapy, 
targeted therapy and immunotherapy. There are multi-
ple drug resistance mechanisms at molecular level limit 
the effectiveness of chemotherapy, e.g., the deregulation 
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Fig. 1  Three different levels of drug resistance mechanisms in lung cancer. Drug resistance develops at three different levels: molecular, cellular, 
and pathological level. Molecular level mechanism includes secondary EGFR T790M and MET amplification after the relapse from EGFR-TKI 
therapy. Cellular level mechanism mainly involves CSC and EMT. Pathological level mechanism includes the ADC-to-SCC transition and ADC or 
SCC-to-SCLC transition. EGFR epidermal growth factor receptor, EGFR-TKI epidermal growth factor receptor-tyrosine kinase inhibitor, BRAF serine/
threonine-protein kinase B-raf, HER2 receptor tyrosine-protein kinase erbB-2, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha, MET hepatocyte growth factor receptor, EMT epithelial-to-mesenchymal transition, CSC cell stem cell, ADC adenocarcinoma, SCC 
squamous cell carcinoma, SCLC small cell lung cancer
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of genes involved in drug uptake, cell cycle, apoptosis, 
sphingolipid metabolism as well as intracellular drug 
sequestration [10]. Gardner et al. [11] recently show that 
the down-regulation of Schlafen 11 (SLFN 11) mediated 
by enhancer of zeste 2 polycomb repressive complex 2 
subunit (EZH2) and H3K27me3 modification induces 
DNA damage repair and thus enables SCLC chemo-
resistance. Molecular alterations are also observed in 
relapsed patients after targeted therapy in lung cancers 
[12]. For example, during epidermal growth factor recep-
tor-tyrosine kinase inhibitor (EGFR-TKI) treatment, sec-
ondary EGFR mutation T790M, MET proto-oncogene, 
receptor tyrosine kinase (MET, also known as hepato-
cyte growth factor receptor, HGFR) amplification, recep-
tor tyrosine-protein kinase erbB-2 (ERBB2, also known 
as HER2) amplification as well as Kirsten rat sarcoma 
viral oncogene homolog (KRAS) mutations are often 
detectable in relapsed lung cancer patients and known 
to contribute to drug resistance [13–15]. In the case of 
anaplastic lymphoma kinase (ALK)-rearranged NSCLC 
patients, ALK point mutations, KIT proto-oncogene 
receptor tyrosine kinase amplification, and other driver 
mutations are implicated for disease relapse [13]. During 
the immune checkpoint blockade treatment, neo-anti-
gen landscape shows dynamic change which contributes 
to the resistance to immunotherapy [16]. These data 
together support an important role of molecular altera-
tions in orchestrating drug resistance.

Drug resistance mechanisms at cellular level is mainly 
classified into two types: cancer stem cell (CSC)- and 
epithelial-to-mesenchymal transition (EMT)-mediated 
drug resistance. CSCs are considered to be highly plas-
tic, resistant to chemotherapy and capable to seed new 
aggressive and chemo-resistant tumors in distant organs 
[17]. Great efforts have been paid to investigate the vul-
nerability of CSC with the purpose to overcome drug 
resistance. However, the findings of reversible transition 
between CSC and non-CSC make the specific target-
ing of CSC extremely difficult [17]. The non-CSC, fre-
quently as the major component of malignant tumors, is 
also known to harbor strong stemness and plasticity [18]. 
Such stemness and plasticity allows non-CSC to de-dif-
ferentiate into CSC under stressful environment [18, 19]. 
Such de-differentiation together with the reversible tran-
sition between CSC and non-CSC creates a huge hurdle 
for effective targeting either CSC or non-CSC alone [19].

The transition from epithelial cells to mesenchymal 
cells also reflects the strong plasticity of cancer cells, 
which is frequently implicated in drug resistance. In con-
trast to epithelial cells, mesenchymal cells tend to har-
bor strong transforming growth factor beta (TGFβ) and 
Wnt autocrine signaling [20]. The EMT often associates 
with down-regulation of multiple apoptotic signaling 

pathways, while it enhances drug efflux and slows cell 
proliferation [17]. The EMT activates several processes 
including of programmed death-ligand 1 (PD-L1) expres-
sion elevation and tumor suppressor region 1 (TSP-1) 
secretion elevation, which induces immune suppression 
and promotes immune escape [17, 21]. Besides, several 
transcription factors including snail family transcrip-
tional repressor (SNAIL), twist family bHLH transcrip-
tion factor (TWIST) and zinc finger E-box binding 
homeobox  1 (ZEB1) activate classical EMT-associated 
properties and induce anti-apoptotic and pro-survival 
phenotype supporting malignant progression [22]. All 
these EMT-associated features collectively promote can-
cer cell survival and help them escape from effective drug 
treatment. However, this doesn’t always turn out to be 
true. A recent study shows that EMT triggered by EGFR-
TKI treatment associates with decreased PD-L1 expres-
sion, indicative of the complexity of the link between 
EMT and immune checkpoint regulation [23].

Drug resistance mechanisms at pathological level
Pathological transition has recently been implicated in 
clinic. Observation of lung ADC transition to either SCC 
or SCLC has been reported in relapsed patients [24, 25]. 
Below we summarized the current progress and discuss 
their link to drug resistance (Fig. 2).

ADC/SCC‑to‑SCLC transition promotes drug 
resistance
Two large cohort studies reveal that approximately 5% 
human lung cancer display the mixed pathology such as 
adenosquamous carcinoma (Ad-SCC), combined large 
cell neuroendocrine carcinoma (LCNEC) and combined 
SCLC [26, 27]. Combined SCLC accounts for about 2.2% 
of all lung cancer [28]. Previous studies show that the 
SCLC and non-SCLC components of combined SCLC 
often share exactly the same genetic mutations [29, 30], 
indicating that these two different pathological lesions 
might share the same cells of origin and/or exist potential 
pathological transition. Notably, most of these pathologi-
cally mixed cancer are observed at advanced stages [26, 
27], indicating that the potential pathological transition 
might occur during late stage of malignancy progression.

The SCLC transition is also observed in clinic after 
patient relapse from molecular targeted therapy. This is 
initially found in a woman with lung adenocarcinoma 
[31]. First biopsy shows that her tumor harbors EGFR 
exon 19 deletion and erlotinib treatment shows par-
tial response. After 18 months of treatment, the tumor 
mass progresses. The second biopsy is then performed 
and shows SCLC pathology with the original EGFR 
exon 19 deletion, indicative of the potential transition 
from ADC to SCLC and its link to drug resistance. In 
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later studies, researchers provided solid evidence show-
ing that the transition of EGFR-mutant ADC to SCLC 
serves as a drug resistance mechanism. Sequist et  al. 
[32] find that about 14% (5/37 cases) drug-resistant 
ADC cases transit to SCLC and thereby the standard 
SCLC therapy overcomes such resistance. We summa-
rized the SCLC transition cases with available clinical 

details in Table 1. Among the total 33 cases, there are 
14 males and 19 females. Despite of those unknown 
smoking status, about 77% (20/26) of the patients are 
non-smokers. There seems no preference for gender 
and smoking status. Except for 8 cases with unknown 
mutation status, most patients (96%, 24/25) show 
exactly the same oncogenic EGFR mutations or ALK 
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Fig. 2  Pathological transition of different lung cancer subtypes. Lung cancer can be divided into two subtypes: NSCLC and SCLC. NSCLC can 
be further divided into three subtypes: ADC, SCC, and LCC. ADCs are considered to originate from alveolar type II cells, club cells or BASCs. SCC 
frequently found at more proximal airways is presumably derived from basal cells. SCLC is typically derived from neuroendocrine cells. Pathological 
transition is observed in clinic including lung ADC-to-SCC transdifferentiation and ADC or SCC-to-SCLC transition. Loss of LKB1 or RB1 potentially 
contributes to the squamous and SCLC transition, respectively. NSCLC non-small cell lung cancer, SCLC small cell lung cancer, ADC adenocarcinoma, 
SCC squamous cell carcinoma, LCC large cell carcinoma, BASC bronchio-alveolar stem cell, LKB1 liver kinase B1, RB1 retinoblastoma
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fusions in the first and second biopsies. Additional 
mutations such as phosphatidylinositol-4,5-bisphos-
phate 3-kinase catalytic subunit alpha (PIK3CA) muta-
tion, EGFR T790M are also detectable after relapse in 
1 and 2 cases, respectively, indicative of the combined 
mechanisms at both molecular and pathological levels 
[13].

Transition from ADC to SCLC is also observed 
in patients with ALK rearrangement. Two relapsed 
patients with ALK fusion after receiving alectinib or 
crizotinib treatment showed ADC-to-SCLC transition 
[33, 34]. Another patient with wild-type EGFR also 
showed the transition to SCLC after developing TKI 
resistance [35]. These data indicate that the transition 

Table 1  Characteristics of 33 relapsed lung ADC patients with SCLC transition

Y yes, N no, NA not available, M male, F female, ADC adenocarcinoma, SCC squamous cell carcinoma, SCLC small cell lung cancer, TKI tyrosine kinase inhibitor, Gef 
gefitinib, Erl erlotinib, Ico icotinib, Afa afatinib, Crizo crizotinib, Alec alectinib, EGFR epidermal growth factor receptor, EGFR 19 del EGFR exon 19 deletion, ALK anaplastic 
lymphoma kinase, WT wild-type
a  1st biopsy: the first biopsy
b  2nd biopsy: the second biopsy

Patient ID Gender Age Smoking 
status

Therapy 1st biopsya 2nd biopsyb References

Pathological 
status

Mutation status Pathological status Mutation status

1 M 54 NA TKI ADC EGFR 19 del SCLC EGFR 19 del [32]

2 F 56 NA TKI ADC EGFR 19 del SCLC EGFR 19 del [32]

3 F 61 NA TKI ADC EGFR 19 del SCLC EGFR 19 del [32]

4 F 72 N Gef ADC EGFR 19 del SCLC EGFR 19 del [91]

5 F 46 N Erl ADC EGFR 19 del SCLC EGFR 19 del [92]

6 F 52 N Erl ADC EGFR 19 del SCLC EGFR 19 del [93]

7 M 80 N Ico ADC EGFR 19 del SCLC EGFR 19 del [94]

8 F 63 N Erl ADC EGFR 19 del SCLC EGFR 19 del [95]

9 M 46 Y Gef ADC EGFR 19 del SCLC EGFR 19 del [96]

10 M 49 Y Erl ADC EGFR 19 del and 
FGFR3 exon 17 
deletion

SCLC EGFR 19 del and FGFR3 
exon 17 deletion

[97]

11 F 60 N Gef ADC EGFR 19 del SCLC EGFR 19 del [98]

12 M 65 N Afa ADC EGFR 19 del SCLC EGFR 19 del [99]

13 F 37 N Gef ADC EGFR 19 del SCLC EGFR 19 del + T790M [100]

14 F 42 N Erl ADC EGFR 19 del SCLC EGFR 19 del + T790M [101]

15 F 49 N Gef ADC EGFR 19 del SCLC NA [102]

16 M 41 Y Gef ADC EGFR 19 del SCLC + SCC NA [61]

17 M 74 Y Gef ADC EGFR 19 del SCLC WT [103]

18 F 48 NA TKI ADC EGFR L858R SCLC EGFR L858R [32]

19 F 67 NA TKI ADC EGFR L858R SCLC EGFR L858R [32]

20 F 72 N Gef ADC EGFR L858R SCLC EGFR L858R [104]

21 M 46 N Gef ADC EGFR L858R SCLC EGFR L858R [105]

22 M 49 Y Gef ADC EGFR L858R SCLC EGFR L858R [106]

23 F 65 N Gef ADC EGFR L858R SCLC EGFR L858R [107]

24 M 73 NA Gef ADC EGFR L858R SCLC EGFR L858R [108]

25 F 40 NA TKI ADC EGFR L858R SCLC EGFR L858R and PIK3CA [32]

26 M 38 N Erl ADC EGFR L858R SCLC NA [109]

27 M 72 Y Crizo ADC ALK SCLC ALK [33]

28 M 67 N Alec ADC ALK SCLC ALK [34]

29 F 72 N Gef ADC WT SCLC NA [35]

30 M 61 N TKI ADC NA SCLC EGFR 19 del [110]

31 F 46 N Gef ADC NA SCLC EGFR 19 del [111]

32 F 45 N Erl- Gef ADC NA SCLC EGFR 19 del [31]

33 F 73 N Gef ADC NA SCLC EGFR L858R [104]
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to SCLC might be independent of various oncogenic 
drivers.

The transition from SCC to SCLC is also associated 
with drug resistance in the clinic [28]. After receiving 
surgery or radiation and chemotherapy, a total of 16 SCC 
patients were found to have SCLC transition. The major-
ity of transited SCLC (12/16, 75%) is found to locate at 
the same sites as the primary tumors.

Recent studies have begun to uncover the underlying 
mechanisms involved in the ADC-to-SCLC transition 
[25, 36]. Niederst et  al. [25] found that retinoblastoma 
(RB) was universally lost in all transited SCLC. This is 
consistent with previous finding about the concurrent 
loss of RB and p53 alleles in most SCLC [37]. Consist-
ently, Owen et  al. [38] find that both RB and P53 defi-
ciencies are required to reprogram lung epithelial cells to 
SCLC. Despite of the genomic evidence of EGFR muta-
tions in transited SCLC, the expression of EGFR mutants 
are found to be remarkably decreased or even shut off 
[25]. Whether RB loss contributes to such down-regu-
lation of EGFR level remains unknown. However, the 
decreased EGFR expression provides a reasonable expla-
nation for the TKI resistance in transited SCLC [36].

Lung ADC‑to‑SCC transition links to drug 
resistance
Lung Ad-SCC is the major subtype of pathologically 
mixed lung cancer. Ad-SCC contains both adenoma-
tous and squamous pathology [39] and accounts for 
approximately 60%–75% of all mixed lung cancer [26, 
27]. Similar to combined SCLC, the adenomatous and 
squamous components in Ad-SCC frequently share the 
same genetic alterations [40–43], indicative of potential 
pathological transition. Up to date, about 22 reported 
cases support the link between the ADC-to-SCC transi-
tion (AST) and drug resistance (Table  2). Among these 
patients, the majority (81.8%) is female and 12 (66.7%) 
of them are non-smoker. Almost all of the transited SCC 
displays the same EGFR mutations as detected in ADC. 
EGFR T790M and PIK3CA mutations were also detected 
in 4 (18.2%) patients, indicative of complicate resistance 
mechanisms. Moreover, 2 ALK-fusion patients showed 
AST after the relapse from molecular targeted therapy. 
AST were also detected in two patients with wild-type 
EGFR. Except for molecular targeted therapy, AST was 
also found in patients treated with chemotherapy or 
immunotherapy. Two patients received chemotherapy 
and one received chemotherapy and immunotherapy 
were found to have SCC transition at relapse. These data 
convincingly support the important link between AST 
and drug resistance.

Evidence from animal models supporting 
the ADC‑to‑SCC transition
Studies of the Genetically Engineered Mouse Models 
(GEMMs) have provided strong in vivo evidence in support-
ing the ADC-to-SCC transition [44, 45]. We and others have 
previously found that liver kinase B1 (LKB1, also named as 
STK11) is frequently mutated in human lung ADC, SCC 
as well as Ad-SCC [46, 47]. Inactivating mutations of LKB1 
seem to be significantly concurrent with Kras mutations 
and confers lung ADC with strong malignant potential and 
promotes metastasis [46, 48]. Strikingly, Lkb1 deletion in 
KrasG12D GEMMs could make ADC progressively transi-
tion into SCC via metabolic reprogramming and excessive 
accumulation of reactive oxygen species (ROS) [49]. YAP, 
the major transcriptional co-factor of the Hippo pathway, 
functions as the barrier for AST. When Lkb1 is lost in lung 
ADC, YAP is activated and up-regulates ZEB2 expression, 
which in turn represses DNp63 transcription. During the 
malignant progression and when ADC grows big, the defi-
ciency of extracellular matrix (ECM), e.g., decreased col-
lagen deposition, fails to promote YAP activation and thus 
relieves ZEB2-mediated repression of DNp63 expression 
and eventually triggers the AST program [50].

The lysyl oxidase (LOX) family are responsible for cross-
linking collagen and elastin, and thus importantly maintain 
the rigidity and structural stability of ECM [51]. The LOX 
family has five members including LOX, LOXL1, LOXL2, 
LOXL3 and LOXL4 with similar catalytic activities [51]. 
Previous study shows that LOX importantly regulates AST 
through ECM remodeling [44, 49]. During the AST pro-
cess, LOX decreases with concurrent reduction of collagen 
disposition [44]. Pharmacological inhibition of LOX sig-
nificantly accelerates the AST process in KrasG12D/Lkb1L/L 
(KL) model [44]. More importantly, long-term LOX inhi-
bition could trigger AST even in KrasG12D/Trp53L/L (KP) 
mouse model, which is known to produce lung ADC only 
[52]. This highlights an essential role of LOX and ECM 
remodeling in AST, which is independent of LKB1 defi-
ciency [52]. The transited SCC show strong resistance to 
LOX inhibition in contrast to lung ADC, consistent with 
the association of AST and drug resistance [52].

Chromatin analysis reveals the contribution of epige-
netic regulation to AST process in KL model. The trans-
ited SCC are featured with the decrease of H3K27me3 
level and the increase of H3K27ac and H3K4me3 levels, 
which might be involved in regulating several key squa-
mous-associated genes such as Sox2, ∆Np63 and Ngfr 
[45]. EZH2, the methyltransferase responsible for cata-
lyzing H3K27me3 [53], is highly expressed in transited 
SCC. Similar findings are observed in human lung SCC 
and the squamous component of human Ad-SCC [45].
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Interestingly, Lkb1 loss together with ectopic SOX2 
expression promotes the development of SCC, poten-
tially through the progressive transition from ADC to 
SCC [54]. Simultaneous deletion of FoxA1/2 and Nkx2-
1 in KRAS mouse model promotes the transition from 
ADC to SCC and these tumors are somehow different 
from those in KL model, and featured with keratinizing 
squamous cell carcinomas [55]. It remains interesting to 
see whether LKB1 is inactivated in this model and the 
squamous transition links to drug resistance.

Previous work has demonstrated that BASCs and club 
cells are the main cell types for squamous transition [45]. 
Up to date, most techniques used to isolate BASCs are 
based on FACS sorting. We recently take advantage of 
dual recombinant systems including Cre/LoxP and Dre/
Rox systems to do the specific lineage-tracing of BASCs 
in vivo [56]. We found that BASCs are capable of differ-
entiating into multiple cell lineages including club cells, 
ciliated cells, alveolar type I and type II cells in various 
lung injury models [56]. Future work will be interesting 

Table 2  Characteristics of 22 relapsed lung ADC patients with potential squamous transition

Y yes, N no, NA not available, M male, F female, ADC adenocarcinoma, SCC squamous cell carcinoma, SCLC small cell lung cancer, EGFR epidermal growth factor 
receptor, TKI tyrosine kinase inhibitor, Gef gefitinib, Erl erlotinib, Afa afatinib, Crizo crizotinib, Alec alectinib, Ceri ceritinib, Beva bevacizumab, ALK anaplastic lymphoma 
kinase, WT wild type, EGFR 19 del EGFR exon 19 deletion
a  1st biopsy: the first biopsy
b  2nd biopsy: the second biopsy

Patient ID Gender Age Smoking 
status

Therapy 1st biopsya 2nd biopsyb References

Pathological 
status

Mutation status Pathological 
status

Mutation status

1 F 79 N Chemotherapy ADC EGFR 19 del SCC EGFR 19 del [112]

2 M 43 Y Chemotherapy ADC EGFR 19 del SCC EGFR 19 del [113]

3 F 48 N Gef ADC EGFR 19 del SCC EGFR 19 del [114]

4 F 51 NA Gef ADC EGFR 19 del SCC EGFR 19 del [115]

5 F 58 Y Erl ADC EGFR 19 del SCC EGFR 19 del [116]

6 F 66 N Erl ADC EGFR 19 del SCC EGFR 19 del [117]

7 F 67 NA Afa ADC EGFR 19 del SCC EGFR 19 del and 
PIK3CA mutation

[118]

8 F 40 Y Afa ADC EGFR 19 del SCC EGFR 19 
del + T790M

[119]

9 F 79 N Gef ADC EGFR 19 del SCC EGFR 
L858R + T790M

[120]

10 M 41 Y Gef ADC EGFR 19 del SCC + SCLC NA [61]

11 F 52 Y Erl + Beva ADC EGFR 19 del SCC EGFR 19 del [121]

12 F 61 N Gef ADC EGFR L858R SCC EGFR L858R [115]

13 M 62 N Gef ADC EGFR L858R SCC EGFR L858R [122]

14 F 63 N Erl ADC EGFR L858R SCC EGFR L858R and 
PIK3CA

[123]

15 F 74 Y Gef ADC EGFR L858R SCC EGFR 
L858R + T790M

[120]

16 M 68 Y Erl ADC EGFR L858R SCC EGFR 
L858R + T790M

[124]

17 F 43 Y Gef ADC EGFR L858R SCC EGFR L858R 
+S768I

[125]

18 F 64 N Gef ADC EGFR 
L858R + T790M

SCC EGFR 
L858R + T790M

[114]

19 F 60 Y ALK TKI ADC ALK SCC ALK [126]

20 F 52 N Crizo/Alec ADC ALK SCC ALK [127]

21 F 63 N Erl ADC WT SCC EGFR 
L858R + T790M

[128]

22 M 69 N Chemotherapy–
immuno-
therapy

ADC WT SCC NA [129]



Page 8 of 13Chen et al. Cancer Commun           (2019) 39:53 

to illustrate whether BASC-derived tumors are prone to 
transdifferentiate into SCC when Lkb1 is deleted.

Conclusion
The drug resistance mechanisms can be classified into 
three different levels: molecular, cellular and pathologi-
cal level. The ADC-to-SCLC transition and ADC-to-SCC 
transition are two major patterns for pathological transi-
tion in link to acquired drug resistance. A better under-
standing of drug resistance mechanisms will hopefully 
change the way of clinical practice and improve patient 
prognosis.

Perspectives
It’s well established that the pathology of lung cancer 
serves as an important factor for clinical management, 
e.g., lung ADC, SCC and SCLC are therapeutically 
treated differently. The link between pathological tran-
sition and drug resistance indicates that even in the era 
of targeted therapy, the importance of pathology should 
not be neglected. For example, in EGFR-mutant lung 
ADC, the median progression-free survival (PFS) after 
TKI treatment is about 10–13 months [57]. In contrast, 
the PFS for lung SCC with similar EGFR mutations is 
only 2.4 months [57]. Even more dramatic finding is that 
transited SCLC from EGFR-mutant ADC have almost 
no response to TKI, potentially due to the shut-down of 
EGFR transcription [36]. This could be explained by the 
‘missing target’ theory, in which the therapeutic target 
disappears after long-term treatment and drug resist-
ance development. It will be interesting to test how EGFR 
mutants are epigenetically regulated and how we could 
transcriptionally re-activate EGFR mutants, which might 
help develop novel therapeutic strategies to overcome 
drug resistance in these transited SCLC.

Recent studies have also indicated that therapeutic tar-
gets could “face off” between different pathologies, e.g., 
YAP works as proto-oncogene in lung ADC but tumor 
suppressor in SCC. In human lung ADC, YAP is highly 
expressed and associated with poor prognosis [58]. 
Consistently, ectopic YAP expression accelerates lung 
ADC progression in KrasG12D mouse model [59]. In con-
trast, YAP suppresses lung SCC progression potentially 
through down-regulation of the lineage-survival gene 
DNP63 [60]. We find that digitoxin is highly potent in 
suppressing SCC growth through YAP activation [60]. 
Understanding of the double faces of YAP in lung ADC 
and SCC will certainly help gain novel insights into the 
process of AST and pathological transition.

Interestingly, pathological transition is not limited to 
AST or ADC/SCC-to-SCLC transition. Although rare, 
one case report shows the transition of EGFR-mutated 
ADC to both SCC and SCLC [61]. Pathological transition 

is also observed when comparing the primary tumor with 
brain metastases [62]. For example, two patients with 
primary lung ADC show SCC or SCLC in brain metas-
tasis whereas another patient with primary lung SCC 
shows ADC in brain metastasis. Transitions from ADC 
to LCNEC, or Ad-SCC to SCLC have also been reported 
[63, 64]. Obviously, our understanding of pathological 
transition is still very limited. Most case reports are from 
the EGFR-mutant lung cancer patients who are ethically 
treated with multiple biopsies. With the improvement 
of treatment strategies, multiple biopsies specimens will 
hopefully provide more insightful information about 
pathological transition.

Besides lung cancer, mixed pathologies are also 
observed in other types of cancer (Fig.  3), e.g., Ad-SCC 
are detectable in human colon cancer [65], prostate 
cancer [66–76] and pancreatic cancer [77]. The AST or 
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Fig. 3  Pathological transition of different types of cancers. 
Pathological transition in lung cancer includes AST and ADC or 
SCC-to-SCLC transition. The AST or AST-like process is previously 
reported in thyroid gland carcinoma, pancreatic cancer as well as 
gastric cancer. Moreover, neuroendocrine differentiation in ADC 
has also been reported in prostate cancer. T thyroid gland, L lung, S 
stomach, Pa pancreas, Pr prostate, Pro proliferation, SCLC small cell 
lung cancer, ADC adenocarcinoma, SCC squamous cell carcinoma, AST 
ADC to SCC transition, CPRC castration-resistant prostate cancer, NE 
neuroendocrine
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AST-like process has been previously reported in pan-
creatic cancer [78], thyroid gland carcinoma [79–81] as 
well as gastric cancer [82]. Moreover, neuroendocrine 
differentiation in ADC has been reported in prostate 
cancer. After androgen receptor (AR) treatment in cas-
tration-resistant prostate cancer (CPRC), certain patients 
develop neuroendocrine small cell cancer (CRPC-NE) 
[83–85]. It is understandable that the malignant trans-
formation of benign tumors induce drug resistance [86]. 
Interestingly, malignant tumors may sometimes become 
less aggressive or even benign after chemotherapy, such 
as neuroblastoma to ganglioneuroma transition [87] and 
malignant germ cell tumors to teratoma transition [88–
90]. These transformed tumors are still growing but show 
the resistance to chemotherapy.

Together, these findings suggest that pathological 
transition might be more common than we previously 
thought. No doubt, the better understanding of patho-
logical transition and the link with drug resistance will 
be beneficial for future clinic practice and eventually help 
cancer patients.
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