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Abstract 

Gastric cancer (GC) is a highly aggressive and life-threatening malignancy. Even with radical surgical removal and 
front-line chemotherapy, more than half of GCs locally relapse and metastasize at a distant site. The dismal outcomes 
reflect the ineffectiveness of a one-size-fits-all approach for a highly heterogeneous disease with diverse etiological 
causes and complex molecular underpinnings. The recent comprehensive genomic and molecular profiling has led to 
our deepened understanding of GC. The emerging molecular classification schemes based on the genetic, epigenetic, 
and molecular signatures are providing great promise for the development of more effective therapeutic strategies in 
a more personalized and precise manner. To this end, the Cancer Genome Atlas (TCGA) research network conducted 
a comprehensive molecular evaluation of primary GCs and proposed a new molecular classification dividing GCs into 
four subtypes: Epstein-Barr virus-associated tumors, microsatellite unstable tumors, genomically stable tumors, and 
tumors with chromosomal instability. This review primarily focuses on the TCGA molecular classification of GCs and 
discusses the implications on novel targeted therapy strategies. We believe that these fundamental findings will sup‑
port the future application of targeted therapies and will guide our efforts to develop more efficacious drugs to treat 
human GCs.
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Background
Gastric cancer (GC) is the fourth most common cancer 
diagnosed worldwide [1] and the second leading cause 
of cancer-related death, accounting for approximately 
10% of all cancer deaths [2, 3]. In China, GC is among 
the three most common cancers [4]. However, in West-
ern countries, although distal GCs are now uncommon, 
the incidence of cancers located in the gastric cardia 
and gastroesophageal junction is steadily increasing [5]. 
Currently, surgery remains the only curative treatment 
strategy; however, more than half of radical GCs locally 
relapse or distantly metastasize [6]. This highly malig-
nant behavior is mainly due to the complexity of GC 
progression, including inherited and environmental fac-
tors, such as habits, diet, virus infection [especially Heli-
cobacter pylori and Epstein-Barr virus (EBV) infection], 

and genomics [7]. Therefore, GC is a more heterogeneous 
disease than previously thought. Using the traditional 
histological classifications that are well accepted, it is dif-
ficult to judge the genetic and epigenetic alterations for 
precise diagnosis and treatment and to predict prognosis 
and clinical outcomes.

The latest advances in molecular platforms, such 
as next-generation sequencing (NGS), have led to the 
development of comprehensive profiling of GCs. The 
results have deepened our understanding of GC biol-
ogy and expanded the possibility of novel experimental 
treatments for GCs. In this article, we review the cur-
rent knowledge regarding the emerging molecular clas-
sifications of GCs, primarily focusing on the new Cancer 
Genome Atlas (TCGA) research network classification of 
GCs, and discuss the therapeutic implications.

Gastric cancer heterogeneity and molecular classifications
A large body of evidence supports the idea that heteroge-
neity in cancer not only exists between different patients 
(inter-tumor heterogeneity) but also occurs within a 
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single patient (intra-tumor heterogeneity). In a study on 
genetic heterogeneity of GCs, erb-b2 receptor tyrosine 
kinase 2 (ERBB2, also known as HER2) was amplified in 
19 (17.4%) of 109 samples [8]. Meanwhile, intra-tumor 
heterogeneity was also identified in 50%–80% of primary 
GCs, and the HER2 amplification occurred in these GCs 
[8]. The results of this study underline the importance of 
obtaining multiple biopsies from different tumor areas 
for diagnostic purposes. This notion might be particu-
larly important when a highly heterogeneous target gene 
is analyzed. Together, it calls for a new classification 
based on the molecular characteristics of GC given that 
GC has been recognized as a much more heterogeneous 
disease than previously thought [9, 10].

Traditionally, GCs are commonly classified into intes-
tinal and diffuse subtypes according to the Lauren clas-
sification or papillary, tubular, mucinous (colloid), and 
poorly cohesive carcinomas according to the World 
Health Organization (WHO) classification (Table  1). 
Based on the integrated genetic characteristics of GCs, 
the Asian Cancer Research Group (ACRG) analyzed gene 
expression in 300 primary gastric tumors and established 
four molecular subtypes (Fig. 1): the microsatellite stable 
(MSS)/epithelial-mesenchymal transition (EMT) sub-
type, microsatellite instable (MSI) subtype, MSS/tumor 
protein 53 (TP53)+ subtype, and MSS/TP53− subtype 
[11–13]. Overall, MSS/EMT tumors have the highest 
frequency of recurrence (63%) with the worst prognosis; 
the MSI subtype has the lowest frequency of recurrence 
(22%) with the best overall prognosis; the MSS/TP53+ 
and MSS/TP53− subtypes have intermediate progno-
sis and recurrence rates. Therefore, the ACRG provides 

a molecular classification that focuses on the associa-
tion between genetic profiling and clinical outcomes. 
In 2014, TCGA performed a comprehensive molecular 
characterization of GCs from 295 patients who had not 
been treated with prior chemotherapy or radiotherapy 
[14, 15]. Concerning increasing evidence of GC hetero-
geneity, TCGA integrated the results of genetic altera-
tions and proposed a molecular classification of GCs 
into four major subtypes: EBV-associated tumors, MSI 
tumors, genomically stable (GS) tumors, and tumors with 
chromosomal instability (CIN) (Fig. 1). In this article, we 
review and discuss the TCGA classification and its thera-
peutic implications.

The TCGA classification of gastric cancers
Epstein‑Barr virus‑associated gastric cancer (EBVaGC)
EBV was discovered 50  years ago from Burkitt’s lym-
phoma [16, 17] and is carried in the blood circulation 
without symptoms in 90% of the adult population [18]. 
However, for reasons yet to be further identified, EBV 
may affect epithelial cells and become carcinogenic. It is 
estimated that EBV is associated with 2% of all human 
tumors, including nasopharyngeal carcinoma [19], 
another major cancer type that is unique to the Chi-
nese population especially in the southern areas, such as 
Guangdong province. In recent years, it has been increas-
ingly recognized that the majority of GCs are associated 
with infectious agents, including EBV [20]. EBV is found 
within malignant epithelial cells in 9% of GCs [21]. Given 
that EBV was first found in GC cells in 1990, the relation-
ship between EBV and GC has become a research hotspot 
[22]. It is reported that the major molecular characteristic 
of EBVaGCs is CpG island promoter methylation of GC-
related genes [20]. The expression of EBV latent mem-
brane protein 2A (LMP2A) may result in the promotion 
of DNA methylation through inducing signal transducer 
and activator of transcription 3 (STAT3) phosphorylation 
and subsequent transcription of DNA methyltransferase 
1 (DNMT1) [23]. TCGA reported the special characteris-
tic of EBVaGCs [14]. They found that most of these can-
cers were present in the gastric fundus or body. They also 
demonstrated that more DNA hypermethylations occur 
in EBVaGCs compared with other subtypes. EBV-asso-
ciated DNA hypermethylations involve both promoter 
and non-promoter CpG islands. Cyclin-dependent kinase 
inhibitor 2A (CDKN2A) promoter hypermethylation was 
demonstrated in all EBVaGCs, whereas mutL homolog 1 
(MLH1) hypermethylation was not noted.

In the aspect of somatic gene alterations, strong pre-
dilection for phosphatidylinositol-4,5-bisphosphate 
3-kinase, catalytic subunit alpha (PIK3CA) mutation 
was observed in EBVaGCs, and approximately 5%–10% 
of all GCs exhibited a PIK3CA mutation. In addition 

Table 1  Pathologic classifications of gastric cancers (GCs)

WHO the World Health Organization

Classification Subtype Characteristics

Lauren Intestinal Recognizable glands, arise 
on a background of intes‑
tinal metaplasia

Diffuse Poor cohesiveness, round 
small cells, diffuse infiltra‑
tion in the gastric wall 
with little or no gland 
formation

WHO Tubular adenocarcinoma Prominent dilated or slit-
like, branching tubules

Papillary adenocarcinoma Well-differentiated tumor 
cells, exophytic growth

Mucinous adenocarci‑
noma

Extracellular mucinous 
pools

Signet-ring cell carcinoma Cells lie scattered in the 
lamina propria, wide 
distances between the 
pits and glands
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to PIK3CA mutation, EBVaGCs had frequent AT-rich 
interactive domain 1A (ARID1A) mutation (55%) and 
BCL6 corepressor (BCOR) mutation (23%) and rarely 
had a TP53 mutation. Chen et  al. [24] identified TP53 
and ARID1A mutations as markers for high clonality 
and low clonality subtypes of GC in Chinese patients, 
respectively. Simultaneously, a novel recurrent ampli-
fication locus containing janus kinase 2 (JAK2), CD274, 
and programmed cell death 1 ligand 2 (PDCD1LG2) was 

identified in EBVaGCs. These genes encode JAK2, pro-
grammed cell death 1 ligand (PD-L1), and programmed 
cell death 2 ligand (PD-L2), separately. JAK2 is used by 
several class I cytokine receptors, including growth hor-
mone (GH), erythropoietin (EPO), and prolactin. These 
receptors primarily use JAK2 to activate STAT to regulate 
gene transcription. PD-L1/2 and their receptors PD-1/2 
are involved in immune checkpoints. Thus, the EBV sub-
type can be a good candidate for testing immunotherapy.

Fig. 1  Molecular classifications of gastric cancers (GCs): a the Asian Cancer Research Group (ACRG) classification; b the Cancer Genome Atlas 
(TCGA) classification. MSS microsatellite stable, TP53 tumor protein 53, MSI microsatellite instable, EMT epithelial-mesenchymal transition, MLH1 
mutL homolog 1, CDH1 cadherin 1, EBV Epstein-Barr virus, CIN, chromosomal instability, GS genomically stable, RTK receptor tyrosine kinase, RAS 
resistance to audiogenic seizures, CDKN2A cyclin-dependent kinase inhibitor 2A, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha, ARID1A AT-rich interactive domain 1A, BCOR BCL6 corepressor, JAK2 janus kinase 2, PD-L programmed cell death ligand, CIMP CpG 
island methylator phenotype, RHOA ras homolog family member A, CLDN18 claudin 18, ARHGAP Rho GTPase-activating protein 6



Page 4 of 10Chen et al. Chin J Cancer  (2016) 35:49 

MSS and CIN gastric cancers
Knowledge on the molecular mechanisms indicates that 
two major genomic instability pathways, MSI and CIN, 
are involved in the pathogenesis of GCs. MSI is caused 
by widespread replication errors in simple repetitive 
microsatellite sequences due to the defects in mismatch 
repair genes. MSI has been recognized as an early change 
in GC carcinogenesis [25]. TCGA reported that the MSI 
subgroup represented 21% of GCs. In addition, MSI 
cases were characterized by accumulation of mutations 
in PIK3CA, ERBB3, HER2, and epidermal growth factor 
receptor (EGFR), but MSI cancers generally lacked targ-
etable amplifications. Importantly, B-Raf (V600E) muta-
tion was not identified in MSI GCs but was commonly 
found in colorectal cancer.

CIN involves the unequal distribution of DNA to 
daughter cells upon mitosis and results in the loss or gain 
of chromosome during cell division [26]. CIN is a more 
common pathway that may comprise clinicopathologi-
cally and molecularly heterogeneous cancers [27]. GC 
has been demonstrated to exhibit significant abnormali-
ties in DNA content. Copy number gains at 8q, 12q, 13q, 
17q, and 20q and copy number losses at 3p, 4q, 5q, 15q, 
16q, and 17q are frequently noted in GCs [28–31]. In 
addition to chromosomal gains and losses, CIN contrib-
utes to focal gene amplifications as well. In TCGA data, 
the CIN subtype represented 50% of GCs and showed 
elevated frequency in the gastroesophageal junction/
cardia. Genomic amplifications of genes that encode 
receptor tyrosine kinases (RTKs) were identified in the 
CIN subtype. A new finding is that elevated phospho-
rylation of EGFR (pY1068) was observed in the CIN 
subtype and consistent with amplification of EGFR [14]. 
In addition, amplifications of cell cycle genes Cyclin E1 
(CCNE1), Cyclin D1 (CCND1), and Cyclin-dependent 
kinase 6 (CDK6) have been noted in CIN tumors. These 
gene amplifications could be the molecular basis of thera-
peutic monoclonal antibodies and targeted agents given 
that their amplifications can lead to excessive cancer cell 
growth.

GS gastric cancer
In the TCGA study, GS tumors represented 19.6% of GCs 
and were enriched with diffuse histological variant. Fif-
teen percent of ras homolog family member A (RHOA) 
mutations were enriched in this diffuse GC subtype. The 
role of RHOA in cell motility highlights the contribu-
tion of RHOA modification to altered cell adhesion in 
the carcinogenesis of diffuse GCs. In addition, mutations 
in cadherin 1 (CDH1) have also been detected in diffuse 
GCs. CDH1 germline mutations underlie hereditary dif-
fuse GCs and are associated with poorly differentiated 

GCs and poor prognosis. In the GS subtype, a recurrent 
interchromosomal translocation between claudin 18 
(CLDN18) and Rho GTPase-activating protein 6 (ARH-
GAP26) was also identified. RNA sequencing data from 
the TCGA cohort identified CLDN18-ARHGAP26 fusion 
in 3.05% of GCs as well as CLDN18 fusion to the homol-
ogous GTPase-activating protein encoded by ARHGAP6 
in 2 cases. This type of fusion gene may represent a class 
of gene fusions in cancers that establish pro-oncogenic 
tumor growth and prognosis. Thus, this new molecu-
lar classification has deepened our understanding of the 
molecular characteristics of GCs and will benefit the tar-
geted therapy.

Therapeutic implications of the TCGA molecular 
classification
The CIN subtype
The TCGA molecular classification provides a number 
of clinical impacts on individualized therapeutics (Fig. 2) 
[14]. In the CIN subtype, the TCGA network identified 
genomic amplifications of RTKs and resistance to audio-
genic seizures (RAS), many of which are targetable. In 
the recent decade, the RTK pathway has been heavily 
investigated [32, 33] and is regarded as a promising can-
didate target for individualized therapy for GCs (Fig. 3). 
EGFR overexpression is associated with an aggressive 
phenotype and short survival [34]. However, similar to 
the results in patients with colorectal cancer, the expres-
sion levels of EGFR did not associate with treatment effi-
cacy on GCs. HER2 is overexpressed in various cancer 
types and acts as an oncogene involved in the regulation 
of cell proliferation, differentiation, motility, and apop-
tosis [33]. In breast cancer, the overexpression of HER2 
is a poor prognosis marker for patients who underwent 
chemotherapy and endocrine therapy but is a positive 
predictive marker for patients who underwent adjuvant 
treatment with trastuzumab, a fully humanized monoclo-
nal antibody. In GCs, after the preliminary phase II study 
[35], Bang et  al. [36] completed a phase III ToGA trial, 
and this milestone study established trastuzumab as the 
first biological therapy. In this trial that demonstrated 
survival benefits in GC patients, the median overall sur-
vival (OS) was 13.8 months in those allocated to trastu-
zumab plus chemotherapy compared with 11.1  months 
in those assigned to chemotherapy alone. In addition to 
the primary endpoint, the median progression-free sur-
vival (PFS, 6.7 vs. 5.5 months) and radiological response 
rate (47% vs. 35%) were also improved with trastuzumab 
therapy. The phase III TYTAN study compared paclitaxel 
alone or in combination with lapatinib in HER2-positive 
GCs in the second-line setting in Asian patients [37]. The 
median OS was 11 months with paclitaxel plus lapatinib 
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compared with 8.9 months with paclitaxel alone. Selected 
completed phase III clinical trials about targeted thera-
pies in advanced GCs are shown in Table 2 [36–41].

Angiogenesis may be highly relevant to the CIN sub-
type based on the recurrent amplification of vascular 
endothelial growth factor (VEGF) gene. Studies suggest 
that angiogenesis is a malignant hallmark, and angio-
genesis has served as a common therapeutic target [42, 

43]. The vascular endothelial growth factor receptor 
(VEGFR)-targeting antibody ramucirumab has demon-
strated antitumor effects on GCs and was approved by 
the Food and Drug Administration (FDA) in the United 
States for advanced gastric or gastroesophageal junc-
tion adenocarcinoma patients with progression on fluo-
ropyrimidine- or platinum-containing chemotherapy. 
REGARD is a phase III trial evaluating ramucirumab 

Fig. 2  The implications of the TCGA molecular classification of GCs for individualized therapeutics. AURK aurora kinase, PLK polo-like kinase, VEGFR 
vascular endothelial growth factor receptor, AKT v-akt murine thymoma viral oncogene homolog 1, mTOR mechanistic target of rapamycin, ERBB 
erb-b2 receptor tyrosine kinase. Other abbreviations as in Fig. 1
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plus best supportive care versus placebo in patients with 
advanced GCs who have progressed after first-line chem-
otherapy [41]. In this trial, ramucirumab significantly 
prolonged the median OS compared with the placebo. In 

another AVAGAST phase III trial, plasma VEGFA was a 
strong biomarker candidate for predicting clinical out-
come in patients with advanced GCs treated with beva-
cizumab [40].

Fig. 3  The current targeted therapies for advanced GCs. EGFR epidermal growth factor receptor, HER2 erb-b2 receptor tyrosine kinase 2, IGFR 
insulin-like growth factor receptor, MEK MAP kinse-ERK kinase, MAPK mitogen-activated protein kinase. Other abbreviations as in Figs. 1, 2

Table 2  Completed phase III clinical trials of targeted therapies for advanced GCs

HER2 erb-b2 receptor tyrosine kinase 2, EGFR epidermal growth factor receptor, VEGFR vascular endothelial growth factor receptor, OS overall survival,  
PFS progression-free survival

Target Clinical trial Inhibitor Combination treatment No. of cases Primary endpoint Reference

HER2 ToGA Trastuzumab Capecitabine/5-fluorouracil + cisplatin 594 OS (13.8 months) [36]

TyTAN Lapatinib Paclitaxel 261 OS (11 months) [37]

EGFR EXPAND Cetuximab Capecitabine/capecitabine + cisplatin 904 PFS (4.4 months) [38]

REAL-3 Panitumumab Best supportive care 463 PFS (2 months) [39]

VEGFR AVAGAST Bevacizumab Capecitabine + cisplatin 774 OS (12.1 months) [40]

REGARD Ramucirumab Best supportive care 355 PFS (5.2 months) [41]
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The EBV subtype
The EBV subtype highlights the viral etiology of GCs; the 
TCGA characterization of this subtype suggests poten-
tial therapeutic targets for this subgroup of cancers. 
Of therapeutic importance, there is a strong predilec-
tion for PIK3CA mutation in EBVaGCs, with non-silent 
PIK3CA mutations noted in 80% of these cases. In con-
trast, tumors in other subtypes displayed fewer PIK3CA 
mutations (range from 3% to 42%). Preclinical work has 
demonstrated that hotspot PIK3CA mutations led to 
constitutive PIK3CA pathway signaling in the absence of 
growth factors [44–46]. Persistent PIK3CA signaling is a 
significant component of acquired resistance to upstream 
inhibitors [47, 48], including BYL-719 (anti-p110), 
MK2206 (anti-AKT), and GDC-0068 (anti-AKT). Thus, 
the TCGA molecular classification will be very important 
for future work to evaluate how the EBV-positive and 
-negative GCs respond to the available PIK3CA inhibi-
tors. Unique treatment strategies for PIK3CA-mutated 
GCs must be explored.

TCGA analysis also showed that PD-1/PD-L1 was 
overexpressed in EBVaGCs. It has been reported that 
patients with cancers expressing high levels of PD-L1 
were more sensitive to anti-PD-1 therapy than those with 
low levels of PD-L1 [49–51]. PD-1, a T cell co-inhibitory 
receptor, plays an important role in the process of cancer 
cell escape from the host’s immune system. The PD-L1/
PD-1 axis can protect cancers from T-effector cells and 
help maintain an immunosuppressive microenvironment 
[52, 53]. The above results suggest that PD-L1 antago-
nists represent new therapeutic options for human can-
cers, especially advanced solid tumors. The FDA recently 
approved two anti-PD-1 monoclonal antibodies, Opdivo 
(also known as nivolumab) and Keytruda (also known as 
pembrolizumab), to treat human cancers. In addition, 
several monoclonal antibodies to either PD-1 or PD-L1 
are undergoing development in numerous clinical trials. 
Nivolumab was the first monoclonal antibody targeting 
PD-1 to exhibit significant clinical activity in solid tumors 
[54, 55]. Nivolumab has a consistent objective response 
rate (ORR) and also extended OS in several clinical stud-
ies in patients with melanoma [56, 57] or non-small cell 
lung carcinoma (NSCLC) [58]. Nivolumab was approved 
by the FDA to treat both advanced melanoma and 
NSCLC. Pembrolizumab has demonstrated efficacy and 
safety similar to nivolumab in advanced melanoma [59, 
60]. More recently, pembrolizumab also demonstrated 
efficacy in patients with advanced NSCLC [61] and has 
shown promising effects on other solid tumors, includ-
ing GC [53]. Muro et al. [53] reported their preliminary 
results from the KEYNOTE-012 trial (NCT01848834) 
at the American Society of Clinical Oncology (ASCO) 
conference. They assessed the safety and efficacy of the 

anti-PD-1 monoclonal antibody pembrolizumab in 
patients with advanced GCs. In this study, the median 
time-to-response was 8 weeks (range, 7–16 weeks), with 
a median response duration of 24 weeks. PD-L1 expres-
sion levels were associated with the ORR. The 6-month 
PFS rate was 24%, and the 6-month OS rate was 69%. It 
was concluded that pembrolizumab demonstrated man-
ageable toxicity and promising antitumor activity in 
advanced GCs [53]. These results support the ongoing 
development of anti-PD-1 therapy for GCs.

The GS and MSI subtypes
The GS subtype exhibited elevated expression of cell 
adhesion pathways, including the B1/B3 integrins, syn-
decan-1-mediated signaling, and angiogenesis-related 
pathways [14]. These results suggest additional candidate 
therapeutic targets, including Aurora kinase (AURK)A/B 
and polo-like kinase (PLK). In contrast, MSI cases gen-
erally lacked targetable amplifications, and mutations 
in ERBB1-3 and PIK3CA were noted, with many muta-
tions at “hotspot” sites observed in other types of can-
cers [14]. AURKA and AURKB are two main members 
of the aurora kinase family. AURKA plays an impor-
tant role during cell mitosis and is frequently amplified 
in several tumors, including GC [62], colorectal cancer 
[63], pancreatic cancer [64], esophageal cancer [65], and 
lung cancer [66]. MLN8237, also known as alisertib, is 
a second-generation derivative of the initial small mol-
ecule MLN8054. Both MLN8237 and MLN8054 act as 
highly specific adenosine triphosphate (ATP)-competi-
tive AURKA inhibitors. In addition, MLN8237 can target 
AURKB at high doses [67, 68]. It is an effective drug with 
high specificity that works in various models and exhibits 
limited off-target activity. There are more than 40 clini-
cal trials with MLN8237 in several cancer types [69]. In 
some of the clinical trials, MLN8237 has been tested 
in combination with other drugs, such as cetuximab 
(NCT01540682, phase I) and docetaxel (NCT01094288, 
phase I). In advanced GCs, a recent phase II clinical trial 
of MLN8237 revealed that 9% of patients responded to 
this therapy [69]. Other AURKA/B inhibitors, such as 
MK-5018 and ENMD-2076, are currently being evaluated 
in phase I and II clinical trials as a single agent or in com-
bination with other therapeutic agents [69].

PLKs, mitotic kinases of the polo family, play a critical 
role in the normal cell cycle, and their overexpression is 
involved in the pathogenesis of multiple human cancers 
[70–74]. Among PLKs, PLK1 is overexpressed in approx-
imately 80% of human tumors, including GC, and is 
associated with a poor prognosis [70, 75, 76]. Currently, 
inhibitors of PLK1 represent a new class of cytotoxic 
agents. BI 2536 is a highly specific and potent small-mol-
ecule PLK1 inhibitor. In an open-labelled phase I study 
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by Hofheinz et al. [77], BI 2536 administered in the treat-
ment schedule demonstrated adequate safety in patients 
with advanced GCs. Volasertib (BI 6727) is a potent and 
selective PLK inhibitor that induces mitotic arrest and 
apoptosis. In phase I trials of both Asian and Caucasian 
patients with advanced solid cancers, including GC, vola-
sertib demonstrated anti-cancer activity with a generally 
manageable safety profile [78, 79]. Phase II monothera-
pies and combination trials of volasertib are currently 
ongoing.

Conclusions
The deep understanding of GC molecular characteriza-
tions has led to new therapeutic strategies. Furthermore, 
the TCGA molecular classification that shows GC het-
erogeneity and distinct salient genomic features pro-
vides a guide to targeted agents for GC individualized 
therapy. Specifically for immune checkpoints, PD-L1/
PD-1 appears to be Achilles’ heels for the EBV subtype 
of GC. However, it should also be noted that much work 
is needed to fully understand the clinical impact of this 
new classification. Therefore, a major unfulfilled task 
is to determine the clinical associations of the molecu-
lar signatures given that the cases in the TCGA cohort 
lacked sufficient clinical follow-up data. Nevertheless, the 
TCGA report is expected to provide valuable foundation 
and motivation to explore and refine molecular classifica-
tion and tailored therapies to significantly decrease mor-
tality and prolong survival of GC patients.
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