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A multilevel pan-cancer map links gene 
mutations to cancer hallmarks
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Abstract 

Background: A central challenge in cancer research is to create models that bridge the gap between the molecular 
level on which interventions can be designed and the cellular and tissue levels on which the disease phenotypes are 
manifested. This study was undertaken to construct such a model from functional annotations and explore its use 
when integrated with large-scale cancer genomics data.

Methods: We created a map that connects genes to cancer hallmarks via signaling pathways. We projected gene 
mutation and focal copy number data from various cancer types onto this map. We performed statistical analyses to 
uncover mutually exclusive and co-occurring oncogenic aberrations within this topology.

Results: Our analysis showed that although the genetic fingerprint of tumor types could be very different, there 
were less variations at the level of hallmarks, consistent with the idea that different genetic alterations have similar 
functional outcomes. Additionally, we showed how the multilevel map could help to clarify the role of infrequently 
mutated genes, and we demonstrated that mutually exclusive gene mutations were more prevalent in pathways, 
whereas many co-occurring gene mutations were associated with hallmark characteristics.

Conclusions: Overlaying this map with gene mutation and focal copy number data from various cancer types makes 
it possible to investigate the similarities and differences between tumor samples systematically at the levels of not 
only genes but also pathways and hallmarks.
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Background
A central challenge in cancer research is to create models 
that bridge the gap between the molecular level on which 
interventions can be designed and the cellular and tissue 
levels on which the disease phenotypes are manifested. 
This is a daunting task. Cancer genomics research in the 
last decade has revealed the enormous complexity of 
this disease. Essential to the cancer phenotype and to its 
understanding are interactions between genes, between 
signaling pathways, and between cells. The latter interac-
tion is exemplified by the important role of tumor hetero-
geneity [1, 2] and the relationship between the tumor and 
its environment [3, 4].

The complexity of cancer is reflected by the notion that 
cancer should not be considered as one disease but as a 
set of many diseases. In addition to traditional character-
istics, including body location and morphology, cancers 
are distinguished by differences in their (epi)genomic sig-
natures, gene and protein expression levels, and hyper-
activated or deactivated pathways. Importantly, these 
differences at the molecular level are expected to enable 
personalized treatment strategies [5–7].

However, all cancers share the same set of deregu-
lated biological processes, termed the hallmarks of can-
cer [8, 9]. How can we understand that tumors that are 
very different at the molecular level are similar when 
observed at a higher level of functional abstraction? 
More importantly, can this mapping that integrates the 
molecular characteristics and the disease phenotype 
lead to new hypotheses about biological mechanisms 
and therapy?
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We have attempted to address these questions by 
creating a map that connects genes via pathways to 
hallmarks. By projecting gene mutation data from 
various cancer types on this map, we investigated the 
similarities and differences between these cancer types 
at the levels of not only genes but also pathways and 
hallmarks.

We considered mutually exclusive (ME) and co-
occurring (CO) genes in the context of the multi-
level map. In several studies, it has been observed 
that gene mutations that affect a pathway tend to be 
altered in an ME pattern [10]. The rationale behind 
that observation is that once a gene involved in a 
pathway is mutated, a second mutation affecting that 
pathway does not confer a further selective advan-
tage to the cancer cell. The large number of pathways 
in the multilevel map allowed us to systematically test 
whether there are indeed many ME mutations in the 
pathways. Interestingly, ME associations are typically 
expected within a pathway and not across pathways 
[11]. This begs the question of whether there are ME 
associations between pairs of genes that are not part 
of the same pathway but link to the same hallmark, or 
whether there are many CO associations at the level 
of hallmarks. A CO association, which is on the other 
end of the spectrum from an ME association, means 
that genes are frequently found mutated together 
across cancer samples. The deregulation of distinct 
biological functions by these CO mutations may be 
necessary to acquire certain hallmark characteristics. 
Finally, we employed the map to assess whether genes 
that are not significantly frequently mutated (SFM) in 
a cancer type, but are mutated in a small number of 
samples, have a role in enabling cancer hallmark char-
acteristics. Recent cancer genome studies have clearly 
demonstrated the extensive mutational heterogeneity 
in cancers [12]; relatively few genes are SFM (and can 
be detected as such by statistical approaches), whereas 
most genes are mutated in a small number of sam-
ples. The functional role of these infrequently mutated 
genes is unclear. Here, we employed the multilevel 
map to elucidate the functional role of these genes.

Methods
Multilevel map
To link 1384 genes to 343 pathways and 10 hallmarks, 
we integrated information from the Pathway Interac-
tion Database (PID) [13] and the Gene ontology (GO) 
[14]. The PID consists of 167 curated signaling path-
ways important in cancer. PID pathways involve multi-
ple GO processes, which are the endpoints of signaling 
branches in the pathway. The 343 pathways in our topol-
ogy comprise the genes within a PID pathway upstream 

of a GO process. These GO processes were linked to 
hallmarks by checking whether they are child pro-
cesses of general GO categories that are representative 
of the cancer hallmarks. For example, in the PID “p53 
pathway” there are 7 genes in a signaling cascade that 
regulate the GO “apoptotic process,” which is a child 
process of “programmed cell death,” which is linked to 
the hallmark “resisting cell death.” Table 1 lists the map-
ping from GO processes to hallmarks. These 10 cancer 
hallmarks consist of the 6 originally defined hallmarks 
[8] augmented by 2 emerging hallmarks and 2 enabling 
characteristics [9]. This mapping was performed by the 
authors with the help of domain experts at the Nether-
lands Cancer Institute. It is similar to a previous map-
ping [15]. Because multiple pathways can be extracted 
from one PID pathway, the pathways in the topology 
are labeled with the PID pathway name followed by an 
index. See “Multilevel map” in the Additional file 1 sec-
tion for details.

Mutation data
Mutation data for 1384 genes and 2740 samples from 10 
different cancer types were obtained from The Cancer 
Genome Atlas (TCGA) [12, 16]. The data were repre-
sented as a binary matrix, i.e., a gene is either aberrated 
or not. The 10 solid cancer types, including the TCGA 
abbreviations used in this work, are listed in Table 2. The 
binary mutation calls were derived from exome-sequenc-
ing data (all non-silent mutations) and copy number 
variation data (focal amplifications and deletions). See 
“Mutation data” and “Significantly mutated and altered 
copy number genes” in the Additional file  1 section for 
details.

Projecting mutation data on the multilevel map
The gene mutation data of the 2740 TCGA tumor 
samples were projected onto the map. We followed a 
straightforward strategy to propagate these mutation 
calls from the level of genes to the levels of pathways and 
hallmarks. If a sample had a mutation in at least one gene 
within a pathway, the mutational investment (MI) score 
of the sample in that pathway was set to 1; otherwise, it 
was set to 0. In other words, we implemented a logical 
OR function when going from genes to pathways, where 
at least one of the inputs (mutation calls for genes in the 
pathway) should be 1 to get an output of 1 (pathway MI). 
Similarly, if a sample had a mutation in at least one gene 
that links to a hallmark, the MI score of the sample in 
that hallmark was set to 1, and otherwise, it was set to 0. 
For each tumor sample, MI scores are thus binary calls at 
the levels of pathways and hallmarks, and they indicate 
the potential deregulation of the pathway and the poten-
tial enabling of the cancer hallmark, respectively. See 
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Table 1 Mapping from hallmarks to Gene ontology (GO) processes

Hallmark No. of genes No. of pathways Linked GO processes and function

Sustaining proliferative signaling 343 50 GO:0008283, cell proliferation

GO:0016049, cell growth

GO:0007049, cell cycle

GO:0051301, cell division

GO:0008284, positive regulation of cell proliferation

GO:0030307, positive regulation of cell growth

GO:0045787, positive regulation of cell cycle

GO:0051781, positive regulation of cell division

Evading growth suppressors 182 13 GO:0009968, negative regulation of signal transduction

GO:0008285, negative regulation of cell proliferation

GO:0030308, negative regulation of cell growth

GO:0045786, negative regulation of cell cycle

GO:0051782, negative regulation of cell division

Resisting cell death 404 57 GO:0012501, programmed cell death

GO:0043067, regulation of programmed cell death

Replicative immortality 2 1 GO:0090398, cellular senescence

GO:0032200, telomere organization

GO:0000723, telomere maintenance

GO:0032204, regulation of telomere maintenance

GO:0001302, replicative cell aging

GO:1900062, regulation of replicative cell aging

GO:2000772, regulation of cellular senescence

Sustained angiogenesis 105 12 GO:0001525, angiogenesis

GO:0045765, regulation of angiogenesis

GO:0001570, vasculogenesis

GO:2001212, regulation of vasculogenesis

GO:0008015, blood circulation

Tissue invasion and metastasis 614 82 GO:0007155, cell adhesion

GO:0001837, epithelial-to-mesenchymal transition

GO:0016477, cell migration

GO:0030155, regulation of cell adhesion

GO:0030030, cell projection organization

GO:0030036, actin cytoskeleton organization

GO:0030030, cell projection organization

GO:0034330, cell junction organization

GO:0042330, taxis

GO:0007163, establishment or maintenance of cell polarity

Genome instability 124 7 GO:0006281, DNA repair

GO:0031570, DNA integrity checkpoint

GO:0045005, maintenance of fidelity involved in DNA-dependent DNA 
replication

GO:0006282, regulation of DNA repair

Tumor-promoting inflammation 84 9 GO:0006954, inflammatory response

GO:0002367, cytokine production involved in immune response

GO:0002718, regulation of cytokine production involved in immune 
response

GO:0042060, wound healing

GO:0061041, regulation of wound healing

GO:0050727, regulation of inflammatory response

GO:0042533, tumor necrosis factor biosynthetic process
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“Random map rewiring” in the Additional file 1 section 
for details.

Mutual exclusivity and co‑occurrence analysis
We employed a statistical analysis to detect ME and CO 
associations of pairs of genes across all cancer types. 
Within each cancer type, we determined the number of 
samples that have binary mutation calls for both mem-
bers of a pair of genes. This “overlap” was assessed for 
ME associations, i.e., an overlap smaller than expected 
by chance, and for CO associations, i.e., an overlap larger 
than expected by chance. Gene pairs were grouped into 
three categories: (1) pairs of genes that were part of the 
same pathway for at least one of the pathways in the mul-
tilevel map, termed “pathway pairs;” (2) pairs of genes 
that were not part of the same pathway, yet impinged 
on the same hallmark for at least one of the hallmarks, 
termed “hallmark pairs;” and (3) pairs of genes that were 
neither part of the same pathway nor impinged on the 
same hallmark, termed “control pairs.” We tested all pairs 
of genes in which both genes had at least 25 mutations 
and either were part of the same pathway or were linked 
to the same hallmark. These analyses were performed for 
each cancer type separately. We used BiRewire [17] to 
create the appropriate null distribution for these tests. 
Specifically, for the binary mutation matrix of each can-
cer type, 10,000 permuted matrices were created. The 
observed overlap of mutated samples for a pair of genes 
in the original binary mutation matrix was compared 
with the overlap values derived from the 10,000 per-
muted matrices. Enhanced P value Estimation for Per-
mutation Test (EPEPT) [18, 19] was used to compute P 
values for these permutation tests. Associations were 
called significant when P ≤  1/n, where n was the total 
number of tests. If n was smaller than 20, the P value 
threshold was set to 0.05. This Bonferroni correction for 
multiple testing results in a per-family error rate of 1. ME 
and CO associations were tested separately. We did not 

test for CO for pairs of genes from the same chromosome 
to avoid spurious associations due to arm level copy 
number gain or loss.

Tail strength
The overall amount of detectable ME and CO associa-
tions was measured by the tail strength (TS) statistic [20]. 
TS was determined from the list of P values obtained 
from the permutation tests for ME and CO associations 
in pathway, hallmark, and control pairs. We assumed 
these P values to be independently distributed such that 
the variance of TS can simply be estimated by 1 divided 
by the number of P values. The difference between two 
TSs follows a normal distribution, the mean of which can 
be estimated by the difference between the two TSs, and 
the standard deviation (SD) of which can be estimated by 
the sum of the two SD estimates. We took P values from 
the normal cumulative distribution function with this 
mean and SD to test for the difference in TSs between 
two groups. Groups were called significantly different 
when P ≤ 0.01.

Software
Analyses were performed in MATLAB (MathWorks, 
Natick, MA, USA) and Python (open source).

Results and discussion
Mapping genes to pathways and to hallmarks
We created a map that connects 1384 genes to 343 path-
ways and to the 10 cancer hallmarks (Fig. 1). On average, 
200 genes signal to a hallmark via 25 pathways. How-
ever, there is a large variation in the number of genes 
and pathways connected to each of the hallmarks. For 
example, the hallmarks “resisting cell death,” “sustaining 
proliferative signaling,” and “tissue invasion and metasta-
sis” are connected to, and thus possibly enabled by, 50 or 
more pathways and more than 300 genes. In contrast, the 
hallmarks “replicative immortality” and “reprogramming 

Table 1 continued

Hallmark No. of genes No. of pathways Linked GO processes and function

Reprogramming energy metabolism 8 2 GO:0006006, glucose metabolic process

GO:0046323, glucose import

GO:0006096, glycolysis

GO:0071456, cellular response to hypoxia

Evading immune destruction 150 19 GO:0006955, immune response

GO:0002418, immune response to tumor cells

GO:0002837, regulation of immune response to tumor cells

GO:0020012, evasion or tolerance of host immune response

GO:0006897, endocytosis

Other 1047 142
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energy metabolism” are connected to 1 and 2 pathways, 
respectively, and only a handful of genes. Additionally, 
many GO processes in the PID could not be linked to any 
of the 10 cancer hallmarks. This resulted in 385 genes and 
119 pathways that were solely connected to the category 
“Other” and were not considered further in this work.

Some well-known cancer genes are hubs in the map, 
i.e., they appear in many pathways and influence multiple 
hallmarks. For example, phosphatidylinositol-4,5-biphos-
phate 3-kinase, catalytic subunit alpha (PIK3CA) appears 
in 39 pathways and signals to 8 hallmarks, and tumor 
protein p53 (TP53) is found in 9 pathways and links to 4 
hallmarks. However, the majority of genes are part of 1 or 
2 pathways and link to 1 or 2 hallmarks. See Additional 
file  2: Figure  S1, Additional file  3: Figure S2, Additional 
file  4: Figure S3, Additional file  5: Figure S4, Additional 
file 6: Figure S5 for a detailed graphical overview of the 
connectivity in this map.

The multilevel mutational landscape
We projected the gene mutation data of the 2740 TCGA 
tumor samples onto the map. Grouping of the samples 
by their cancer types allowed us to investigate the aver-
age MI per cancer type at the level of genes, pathways, 
and hallmarks (Fig. 2a). At the level of genes, there was 
a large variation in mutation frequency among cancer 
types. This is not surprising because it is well known that 
cancer types are characterized by specific gene mutation 
signatures [12]. For example, adenomatous polyposis coli 
(APC) mutations are mostly specific to colorectal adeno-
carcinomas (CORE); 77% of these samples have an APC 
mutation, much more than the frequency for any other 
cancer type. At the level of pathways, there was a smaller 
variation in MI among cancer types. For example, the 
coefficient of variation (CoV) of the average MI score of 
the p53 pathway across cancer types was smaller than the 
CoV of the mutation status of the gene TP53. The CoV 
is defined as the SD divided by the mean. In this case, 

it is the SD of the 10 average MI scores divided by the 
mean of these 10 MI scores. At the level of hallmarks, the 
average MI scores across cancer types were even more 
similar to each other. Many of them were between 75 and 
100%, indicating that for almost all tumor samples across 
cancer types there are gene mutations that link to each 
of the hallmarks. The two aforementioned sparsely con-
nected hallmarks are exceptions. The greater similarity 
across cancer types at the level of hallmarks is also shown 
by the decrease of the average CoV from 0.93 to 0.53 to 
0.25 when moving from genes to pathways to hallmarks 
(Fig. 2b).

We compared the CoVs derived from this map with 
those derived from 1000 randomly rewired multilevel 
maps (see “Randomly rewired map” in the Additional 
file  1 section). For these randomly rewired maps, genes 
were connected to randomly selected pathways, and 
pathways were connected to randomly selected hall-
marks. However, the in-degree and out-degree of the two 
bipartite graphs in this map, i.e., from genes to pathways 
and from pathways to hallmarks, were maintained. We 
observed substantially higher CoVs for several pathways 
for the actual map compared with the randomized map 
(Additional file  7: Figure  S6). This indicates that cancer 
types are characterized by different MI scores at the lev-
els of not only genes but also pathways. Although the 
CoVs were small at the level of hallmarks, we found that 
for some hallmarks they were slightly yet consistently 
larger than those for randomly rewired maps, hinting 
that cancer types might have different MIs in hallmarks.

In conclusion, the multilevel map populated with 
mutation data establishes the already intuitive answer 
to our question of how genetically different tumors can 
share the same hallmark characteristics; mutations in dif-
ferent genes impinge on the same or functionally related 
pathways and ultimately deregulate the same biological 
processes.

Mutual exclusivity and co‑occurrence of gene mutations 
that enable hallmarks
Our strategy of propagating the binary mutation calls to 
the levels of pathways and hallmarks is based on the con-
cept of “mutual exclusivity.” We investigated ME and CO 
genes in the context of the multilevel map.

The results of the statistical analyses showed that 
the largest number of significant ME and CO asso-
ciations was discovered for pathway pairs (22% of all 
pathway pairs tested) followed by hallmark pairs (8%) 
and then control pairs (6%) (Fig.  3a). For all categories, 
we observed more ME associations than CO associa-
tions. However, the ratio of significant ME to CO asso-
ciations differed substantially among the three categories 
(P =  0.03, Chi square test). Importantly, at the level of 

Table 2 Ten tumor types and their abbreviations

Abbreviation Description No. of samples

BLCA Bladder urothelial carcinoma 95

BRCA Breast invasive carcinoma 637

CORE Colon/rectum adenocarcinoma 219

GBM Glioblastoma multiforme 268

HNSC Head and neck squamous cell carcinoma 296

KIRC Kidney renal clear cell carcinoma 338

LUAD Lung adenocarcinoma 169

LUSC Lung squamous cell carcinoma 177

OV Ovarian serous cystadenocarcinoma 301

UCEC Uterine corpus endometrioid carcinoma 240
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pathways, we observed more ME associations than CO 
associations (the ME:CO ratio was 11:1 for pathway pairs 
compared with an ME:CO ratio of 2:1 for control pairs), 
confirming the notion that mutual exclusivity is more 
prevalent in pathways. At the hallmark level, the ME:CO 
ratio was 3:1, which means that relative to the ME:CO 
ratio of 11:1 for pathways, there were more CO associa-
tions for the hallmark pairs. This observation hints that 
enabling hallmarks might require the concerted deregu-
lation of distinct biological functions, yet not providing 
overwhelming evidence for this hypothesis.

This pattern was similar across most cancer types 
except for ovarian serous cystadenocarcinoma (OV), 
which was dominated by CO associations at the hallmark 
level (Fig. 3b). An overview of all significant associations 
is shown in Additional file 8: Table S1.

To investigate CO and ME associations further in path-
ways and hallmarks, we employed a complementary sta-
tistical analysis. Instead of looking only at the significant 
associations, we analyzed the complete distribution of P 
values using the TS statistic [20]. The TS and its confidence 
interval (CI) were obtained for the P values derived from 
the ME and CO tests for pathway, hallmark, and control 
pairs, separately (Fig. 3c). A high TS indicates that there are 
more small P values than is expected by chance. Interest-
ingly, for hallmark and control pairs, the TS was significantly 
larger for CO associations than for ME associations. Thus, 
although there were more significant individual ME associa-
tions (Fig. 3a), the overall distribution of P values was skewed 
towards low P values for CO associations (Fig.  3c). Other 
observations of the TS were in line with the previous analy-
sis. Specifically, the TS for ME associations was the highest 

Protein 
complex
GO
process

Table 1a

1384 
genes

343
pathways

10
hallmarks

b Hallmark No. of genes No. of pathways
1 Resisting cell death 404 57
2 Sustaining proliferative signaling 343 50
3 Tissue invasion and metastasis 614 82
4 Evading growth suppressors 182 13
5 Evading immune destruction 150 19
6 Genome instability 124 7
7 Sustained angiogenesis 105 12
8 Tumor-promoting inflammation 84 9
9 Replicative immortality 2 1

10 Reprogramming energy metabolism 8 2
Other 1047 142

c

…

Fig. 1 Multilevel map connecting genes via pathways to hallmarks. a Illustration of the automated process that links genes to pathways and to 
hallmarks. Left A pathway from the Pathway Interaction Database (PID). All genes marked with an orange star are upstream of the Gene ontology 
(GO) process “negative regulation of apoptotic process” (red box). (The text of the protein complexes and GO processes are not meant to be read-
able.) Middle A part of the GO hierarchy. The GO process “negative regulation of apoptotic process” is associated with the more general GO process 
“regulation of programmed cell death” (blue box), which is representative of the cancer hallmark “resisting cell death.” Right Mapping between each 
hallmark and one or more general GO terms. b Depiction of the multilevel map, which links 1384 genes to 343 pathways and to 10 hallmarks. c A 
table indicating the number of genes and pathways linked to each of the 10 hallmarks
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in pathway pairs, followed by hallmark pairs, for which the 
TS was significantly lower. Control pairs had the lowest TS. 
For CO associations, in contrast, there was no significant dif-
ference in the TS between pathway and hallmark pairs. This 
provides further evidence for the hypothesis that ME is more 
prevalent in pathway pairs than in hallmark pairs.

The role of infrequently mutated genes in pathway 
deregulation and hallmark activation
We employed the multilevel map to elucidate the role of 
genes that are not SFM in a cancer type.

First, we observed that many tumor samples (approxi-
mately 20% on average across all cancer types and hall-
marks), which lacked mutations in SFM genes that were 
linked to hallmarks, had mutations in other genes that 
were linked to hallmarks and could potentially play a role 
in enabling them (Additional file 9: Figure S7).

Recently, ME and CO analysis was used to illuminate the 
role of these genes through associations with other genes in 
sub-networks [10]. Specifically, Leiserson et al. [10] identified 
sub-networks of ME and CO associations between genes 
using a protein–protein interaction network as a scaffold. 
In the present study, we used the multilevel map as a scaf-
fold and identified many associations among genes that are 
not SFM. For example, the ME and CO analysis for head 
and neck squamous cell carcinoma (HNSC) revealed several 
associations between SFM and non-SFM genes (Fig. 4a). In 
general, almost half (45%) of all significant pairs at the path-
way and hallmark levels included at least one gene that was 
not SFM in the tumor type (Fig. 4b). The distribution of pairs 
containing or consisting only of SFM genes was significantly 
skewed across ME and CO associations (P  <  0.001, Chi 
square test) as well as across the three categories (P < 0.001, 
Chi square test). In addition, we found a large number of CO 
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Fig. 2 Mutation frequencies across cancer types. a Heatmaps depicting the percentage of samples within a cancer type that have a mutation in 
a gene (top), a mutation in at least one gene within a pathway (middle), and a mutation in at least one gene that is linked to a hallmark (bottom). 
Ten genes, 10 pathways, and all 10 hallmarks are shown. These genes and pathways were chosen based on the large variation in their mutation 
frequencies across cancer types. The coefficient of variation (CoV) in mutation frequencies across cancer types for each depicted gene, pathway, 
and hallmark is shown to the right of the heatmaps. Some pathway names are shortened for clarity. The number of genes in a pathway is stated 
in parentheses behind the pathway name. The number of genes linked to a hallmark is stated in parentheses behind the hallmark name. MTOR 
mechanistic target of rapamycin, MYC v-myc avian myelocytomatosis viral oncogene homolog, CTTN cortactin, FGFR1/FLG fibroblast growth factor 
receptor 1/filaggrin, EGFR epidermal growth factor receptor, PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha, PTEN/
TEP1 phosphatase and tensin homolog/telomerase-associated protein 1, APC adenomatous polyposis coli, KRAS Kirsten rat sarcoma viral onco-
gene homolog, TP53 tumor protein p53, HNSC head and neck squamous cell carcinoma, LUSC lung squamous cell carcinoma, OV ovarian serous 
cystadenocarcinoma, CORE colon adenocarcinoma/rectum adenocarcinoma, BLCA bladder urothelial carcinoma, BRCA breast invasive carcinoma, 
LUAD lung adenocarcinoma, GBM glioblastoma multiforme, KIRC kidney renal clear cell carcinoma, UCEC uterine corpus endometrioid carcinoma. b 
Boxplot with the CoVs for all genes, pathways, and hallmarks
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pairs at the hallmark level containing one or no SFM genes. 
This is a clear indication that the concerted effect of muta-
tions in genes that are not SFM could play an important role 
in establishing cancer hallmark characteristics.

Conclusions
We have created a map that connects genes to cancer hall-
marks via pathways. We projected gene mutation and focal 
copy number alteration data from various cancer types onto 

this map. This allowed us to show that ME gene mutations 
are more prevalent in pathways compared with hallmarks, 
and conversely, that CO gene mutations are relatively 
important to enable hallmark characteristics. In addition, 
we demonstrated how the multilevel map can help to clarify 
the role of infrequently mutated genes.

However, making relevant predictions of how molecu-
lar events affect cellular and tissue phenotypes will involve 
computational multilevel models that are much richer in 
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biological knowledge and data than the model presented 
here. We have employed a straightforward strategy to pro-
ject the cancer gene mutation and copy number data onto 
the multilevel map. Future approaches will have to balance 
the added benefit of integrating additional knowledge and 
data with the added model complexity. We foresee several 
approaches that would yield more functional insight from 
the multilevel map when integrated with molecular data. 
First, information about genes can be formalized within 
the map. For example, many cancer genes can be classified 
as either tumor suppressor genes, which are inactivated by 
mutations or deletions, or oncogenes, which are activated 
by mutations or amplifications. These distinct roles will help 
to predict the downstream consequences of genomic aber-
rations. In addition, the position of a mutation in a gene 
potentially has an effect on its functional consequences 
[21], which could be taken into account. Second, currently 
unused information in the PID about the interactions 
between proteins (and other biomolecules), including posi-
tive and negative regulation, protein–protein binding, and 
other interactions, would enable the inference of regulatory 
relationships instead of simple statistical associations. Third, 
integration of additional molecular data, including gene and 
protein expression as well as epigenetic modifications, would 
make the information flow across the map more physiologi-
cally relevant. There are already some approaches that inte-
grate different data types and interactions in a systematic and 
quantitative way [22, 23]. However, none of these approaches 
explicitly incorporate hallmarks into their framework.

In its current form, there are several important considera-
tions about the multilevel map. First, the map is incomplete 
in terms of genes. A few frequently mutated genes, such 

as AT rich interactive domain 1A (ARID1A) and mucin 16 
(MUC16), are not part of the map, simply because they are 
not part of PID. The use of pathway databases not only pre-
vents the discovery of novel, relevant genes, but also limits 
the use of more recently discovered, and thus less studied, 
cancer genes. Second, certain cancer hallmarks are poorly 
characterized as evidenced by the very small number of 
genes and pathways that could be linked to these hallmarks. 
This seeming lack of annotation might be salvaged by 
updated pathway information. In addition, the large num-
ber of GO categories in the PID that could not be associated 
with cancer hallmarks could be revisited specifically with 
these underrepresented hallmarks in mind. Third, the map 
lacks certain well-established relationships. Specifically, the 
automated procedure was not able to map some well-known 
cancer genes, including cyclin-dependent kinase inhibi-
tor 2A (CDKN2A), F-box and WD repeat domain contain-
ing 7 (FBXW7), and E2F transcription factor 3 (E2F3), to a 
hallmark. Although common knowledge would link the cell 
cycle regulator CDKN2A to sustained proliferative signaling 
and perhaps other hallmarks, these relations were not pre-
sent as such in the PID and the GO.

Despite these shortcomings, we conjecture that multi-
level maps, such as the one presented here, will help in the 
interpretation of large cancer genomic data sets. The use of 
three functional levels, i.e., genes, pathways, and hallmarks, 
facilitates an intuitive understanding. The pathways and 
hallmarks can be seen as conceptual tools that represent 
the functional levels crucial for an intelligible mapping from 
genes to the phenotype. The information in the map is easily 
assimilated with the researcher’s domain knowledge empow-
ering the formulation of novel hypotheses and experiments.
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